Seongsoo Kim;Hyunsoo Na;Hong-Geun Ahn;Han-Sam Park;Jaewoong Seol;Il-Hoon Cho
대한의생명과학회지
/
제29권4호
/
pp.344-354
/
2023
This study emphasizes the importance of early diagnosis and response to COVID-19, leading to the development of a rapid diagnostic kit using quantum dots. The research focuses on finely tuning bioconjugation with quantum dots to enhance the accuracy and sensitivity of COVID-19 diagnosis. We have developed a COVID-19 rapid diagnostic kit that exhibits a sensitivity more than 50 times higher than existing COVID-19 diagnostic kits. Quantum dots enable the accurate detection of COVID-19 viral antigens even at low concentrations, providing a rapid response in the early stages of infection. The COVID-19 quantum dot diagnostic kit offers quick analysis time, utilizing the quantum properties of particles to swiftly measure COVID-19 infection for immediate response and isolation measures. Additionally, this diagnostic kit allows for multiple analyses with ease, as multiple quantum dots can detect various antigens and antibodies simultaneously in a single experiment. This efficiency enhances testing, reduces sample requirements, and lowers experimental costs. The application of this diagnostic technology is anticipated in the future for early diagnosis and monitoring of other infectious diseases.
International Journal of Computer Science & Network Security
/
제24권9호
/
pp.127-134
/
2024
The acute respiratory infection known as a coronavirus (COVID-19) may present with a wide range of clinical manifestations, ranging from no symptoms at all to severe pneumonia and even death. Expert medical systems, particularly those used in the diagnostic and monitoring phases of treatment, have the potential to provide beneficial results in the fight against COVID-19. The significance of healthcare mobile technologies, as well as the advantages they provide, are quickly growing, particularly when such applications are linked to the internet of things. This research work presents a knowledge-based smart system for the primary diagnosis of COVID-19. The system uses symptoms that manifest in the patient to make an educated guess about the severity of the COVID-19 infection. The proposed inference system can assist individuals in self-diagnosing their conditions and can also assist medical professionals in identifying the ailment. The system is designed to be user-friendly and easy to use, with the goal of increasing the speed and accuracy of COVID-19 diagnosis. With the current global pandemic, early identification of COVID-19 is essential to regulate and break the cycle of transmission of the disease. The results of this research demonstrate the feasibility and effectiveness of using a knowledge-based smart system for COVID-19 diagnosis, and the system has the potential to improve the overall response to the COVID-19 pandemic. In conclusion, these sorts of knowledge-based smart technologies have the potential to be useful in preventing the deaths caused by the COVID-19 pandemic.
Objectives : This study aims to analyze the patents filed in the clinical diagnosis sector where technologies have been actively developed since the advent of the 4th industrial revolution. Methods : The analysis has been conducted in two ways - the period from 2016 to 2021 and the time points before and after COVID-19 - by visualizing based on the word cloud method. Results : Over two thirds of patents has been filed in the A61B sector (71.8%) and cure, sensor, self diagnosis, control, and breakdown have been observed in the period above. During the overall period (2016~2021), 'ultrasound'(7.5%), 'image'(5.1%), 'skin'(4.0%), 'treatment'(3.4%), and 'artificial intelligence(2.5%)' were the frequently patent applications technologies. In addition, 'ultrasound'(6.2%), 'image'(5.5%), 'skin'(4.0%), 'treatment' (3.7%), and 'portable'(1.7%) appeared most frequently before COVID-19 whereas 'ultrasound(5.5%)', 'artificial intelligence(4.2%)', 'diagnostic device'(1.9%), 'dimentia'(1.6%), and 'diagnostic kit'(1.4%) emerged the most after COVID-19. Conclusion : This study is meaningful in that it showed the technological development trend in the digital diagnosis sector and it was found that the Korean medicine field should contribute to this field more actively in the future.
Min Ji Park;Jung Kwan Eun;Hee Sun Baek;Min Hyun Cho
Childhood Kidney Diseases
/
제26권2호
/
pp.74-79
/
2022
Purpose: Children with nephrotic syndrome may experience disease relapse or aggravation triggered by various viral infections. Limited studies on the clinical implications of the coronavirus disease 2019 (COVID-19) pandemic in children with nephrotic syndrome have been published worldwide. Therefore, this study aimed to investigate the effects of COVID-19 on the clinical course of nephrotic syndrome in children. Methods: The medical records of 59 patients with idiopathic nephrotic syndrome who visited our hospital between February and June 2022 were retrospectively analyzed. Results: Twenty of the total 59 patients with nephrotic syndrome were diagnosed with COVID-19 during the study period. The mean age at the time of the diagnosis of nephrotic syndrome and COVID-19 in all 20 patients was 4.6±3.5 and 8.9±3.9 years, respectively. Three patients (15%) were diagnosed with nephrotic syndrome relapse during COVID-19 and the relapse rate was similar to them without COVID-19 (20.5%, 8/39 patients). At the time of the COVID-19 diagnosis, fever (85%) and cough (40%) were the most common symptoms. After the diagnosis of COVID-19, all patients showed improvement with symptomatic treatment, including antipyretic analgesics and cold medicine. None of the critical patients required hospitalization or oral antiviral medications. Conclusions: Despite the use of immunosuppressants, the clinical manifestations of COVID-19 in children with nephrotic syndrome were not severe and are expected to be similar to that in the general population. The relapse rate of nephrotic syndrome in children with COVID-19 was also not different from them without COVID-19.
Alfaidi, Aseel;Alshahrani, Abdullah;Aljohani, Maha
International Journal of Computer Science & Network Security
/
제22권9호
/
pp.195-207
/
2022
COVID-19 has remained one of the most serious health crises in recent history, resulting in the tragic loss of lives and significant economic impacts on the entire world. The difficulty of controlling COVID-19 poses a threat to the global health sector. Considering that Artificial Intelligence (AI) has contributed to improving research methods and solving problems facing diverse fields of study, AI algorithms have also proven effective in disease detection and early diagnosis. Specifically, acoustic features offer a promising prospect for the early detection of respiratory diseases. Motivated by these observations, this study conceptualized a speech-based diagnostic model to aid in COVID-19 diagnosis. The proposed methodology uses speech signals from confirmed positive and negative cases of COVID-19 to extract features through the pre-trained Visual Geometry Group (VGG-16) model based on Mel spectrogram images. This is used in addition to the K-means algorithm that determines effective features, followed by a Genetic Algorithm-Support Vector Machine (GA-SVM) classifier to classify cases. The experimental findings indicate the proposed methodology's capability to classify COVID-19 and NOT COVID-19 of varying ages and speaking different languages, as demonstrated in the simulations. The proposed methodology depends on deep features, followed by the dimension reduction technique for features to detect COVID-19. As a result, it produces better and more consistent performance than handcrafted features used in previous studies.
Gladys Mbuthia;Doris Machaki;Sheila Shaibu;Rachel W. Kimani
Safety and Health at Work
/
제14권4호
/
pp.467-475
/
2023
Background: To mitigate the spread of Covid-19, nurses infected with the virus were required to isolate themselves from their families and community. Isolated patients were reported to have experienced mental distress, posttraumatic stress disorder symptoms, and suicide. Though studies have reported the psychological impact of the Covid-19 pandemic, less is known about the lived experiences of nurses who survived Covid-19 infection in sub-Saharan Africa. Methods: A descriptive phenomenological approach was used to study the lived experiences of registered nurses who survived Covid-19 disease. In-depth interviews were conducted among nurses diagnosed with Covid-19 from two hospitals in Kenya between March and May, 2021. Purposive and snowball sampling were used to recruit registered nurses. Data were analyzed using Giorgi's steps of analysis. Results: The study included ten nurses between 29 and 45 years of age. Nurses' experiences encompassed three themes: diagnosis reaction, consequences, and coping. Reactions to the diagnosis included fear, anxiety, and sadness. The consequence of the diagnosis and isolation was stigma, isolation, and loneliness. Nurses coping mechanisms included acceptance, creating routines, support, and spirituality. Conclusion: Our findings aid in understanding how nurses experienced Covid-19 infection as patients and will provide evidence-based content for supporting nurses in future pandemics. Moreover, as we acknowledge the heroic contribution of frontline healthcare workers during the Covid-19 pandemic, it is prudent to recognize the considerable occupational risk as they balance their duty to care, and the risk of infection to themselves and their families.
In this paper, a study was conducted to find a self-diagnosis method to prevent the spread of COVID-19 based on machine learning. COVID-19 is an infectious disease caused by a newly discovered coronavirus. According to WHO(World Health Organization)'s situation report published on May 18th, 2020, COVID-19 has already affected 4,600,000 cases and 310,000 deaths globally and still increasing. The most severe problem of COVID-19 virus is that it spreads primarily through droplets of saliva or discharge from the nose when an infected person coughs or sneezes, which occurs in everyday life. And also, at this time, there are no specific vaccines or treatments for COVID-19. Because of the secure diffusion method and the absence of a vaccine, it is essential to self-diagnose or do a self-diagnosis questionnaire whenever possible. But self-diagnosing has too many questions, and ambiguous standards also take time. Therefore, in this study, using SVM(Support Vector Machine), Decision Tree and correlation analysis found two vital factors to predict the infection of the COVID-19 virus with an accuracy of 80%. Applying the result proposed in this paper, people can self-diagnose quickly to prevent COVID-19 and further prevent the spread of COVID-19.
코로나바이러스감염증-19 (coronavirus disease 2019; 이하 COVID-19)는 전 세계적 대유행 질환으로 인류 보건을 위협하고 있다. 흉부 CT 및 흉부X선사진은 COVID-19의 표준 진단검사인 역전사 중합효소 연쇄반응에 더하여 COVID-19 진단 및 중증도 평가에서 중요한 역할을 하고 있다. 본 종설에서는 흉부 CT 및 흉부X선사진의 COVID-19 폐렴에 대한 현재 역할에 대하여 살펴보고 인공지능을 적용한 대표적 초기 연구들과 저자들의 경험을 소개함으로써 향후 활용가치에 대해 살펴보고자 한다.
Over a span of few decades, the world has seen the emergence of new viruses that have posed serious problems to global health .COVID-19 is a major pathogenic threat to the modern world that primarily shoots the respiratory system of human beings. Wuhan which is the capital city of Hubei, China was the first place in the world where first cases of COVID-19 emerged and the scores of cases significantly increased at an immense rate leading to city isolation and establishment of new specially designed hospitals. SARS-CoV had emerged from bats in china (2002) and MERS-CoV from camels transmitted via bats in Middle East (2012) where the previous versions of COVID-19 took place. Infections with SARS-CoV-2 are now widespread, like Nuclear Chain Reaction (NRC). In this review we will discuss the COVID-19 origin, transmission, incubation, diagnosis and therapies available at the present scenario.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.