• Title/Summary/Keyword: COTS

Search Result 100, Processing Time 0.025 seconds

Full-scale bridge expansion joint monitoring using a real-time wireless network

  • Pierredens Fils;Shinae Jang;Daisy Ren;Jiachen Wang;Song Han;Ramesh Malla
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.359-371
    • /
    • 2022
  • Bridges are critical to the civil engineering infrastructure network as they facilitate movement of people, the transportation of goods and services. Given the aging of bridge infrastructure, federal officials mandate visual inspections biennially to identify necessary repair actions which are time, cost, and labor-intensive. Additionally, the expansion joints of bridges are rarely monitored due to cost. However, expansion joints are critical as they absorb movement from thermal effects, loadings strains, impact, abutment settlement, and vehicle motion movement. Thus, the need to monitor bridge expansion joints efficiently, at a low cost, and wirelessly is desired. This paper addresses bridge joint monitoring needs to develop a cost-effective, real-time wireless system that can be validated in a full-scale bridge structure. To this end, a wireless expansion joint monitoring was developed using commercial-off-the-shelf (COTS) sensors. An in-service bridge was selected as a testbed to validate the performance of the developed system compared with traditional displacement sensor, LVDT, temperature and humidity sensors. The short-term monitoring campaign with the wireless sensor system with the internet protocol version 6 over the time slotted channel hopping mode of IEEE 802.15.4e (6TiSCH) network showed reliable results, providing high potential of the developed system for effective joint monitoring at a low cost.

Cost-Effective High-Altitude Scientific Balloon Development and its Flight Test (비용효율적인 고고도 과학기구 개발 및 비행시험)

  • Kang, Jungpyo;Shim, Gyujin;Kim, Hweeho;Lee, Yongseon;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.345-358
    • /
    • 2018
  • The high altitude scientific balloon has been used for decades in advanced aerospace countries such as United States, France, and Japan to carry out various research objectives. Since the initial cost for development and operation is enormous, it has been conducted by national research institutes. Recently, the advent of open source software/hardware ecosystems with low-cost yet high-performance have lowered barriers to enter into scientific balloon research and development. In this study, a zero pressure balloon prototype was designed considering the cost, usability, compatibility, and development period by using commercial off the shelf (COTS) items. In addition, the flight operation experience was accumulated through eight times of the flight tests, and operational reliability of the balloon system was verified. Finally, the foundation for the operation of the large zero pressure balloon was established.

Design of Radio Frequency Test Set for TC&R RF Subsystem Verification of LEO and GEO Satellites (저궤도 및 정지궤도위성의 TC&R RF 서브시스템 검증을 위한 RF 시험 장비 설계)

  • Cho, Seung-Won;Lee, Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.674-682
    • /
    • 2014
  • Radio Frequency Test Set (RFTS) is essential to verify Telemetry, Command & Ranging (TC&R) RF subsystem of both Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO) satellite during Assembly Integration & Test (AI&T). The existing RFTS was specialized for each project and needed to be modified for each new satellite. The new design enables RFTS to be used in various projects. The hardware and software was designed considering this and therefore it could be directly used in other projects within a similar test period without modification or inconvenience. It will be also easily controlled, modified, and managed through the extension in modularization according to each function and the use of COTS (commercial on-the-self) and this will improve system reliability. A more reliable RF test measurement is also provided in this new RFTS by using an accurate reference clock signal.

Development of a GPS Receiver System for Satellite Launch Vehicles (위성발사체용 GPS 수신기 시스템의 개발)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Shin, Yong-Sul;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.929-937
    • /
    • 2008
  • A GPS receiver system utilized on satellite launch vehicles should operate normally under harsh environments as well as high-dynamic conditions. The GPS receiver system to use for range safety of KSLV(Korea Space Launch Vehicle)-I that is the first satellite launch vehicle developed by KARI(Korea Aerospace Research Institute) has been confirmed to survive under the environment of the launcher through extensive terrestrial tests including humidity, high and low temperatures, vacuum, sinusoidal and random vibrations, shocks, acceleration, EMI/EMC(Electromagnetic Interference/ Electromagnetic Compatibility), etc. Several performance tests have been also carried out in order to evaluate tracking capability and accuracy of the GPS receiver under high-dynamic conditions using a GPS signal simulator. Some lessons-learned during development of the GPS receiver system and its special characteristics compared with COTS(Commercial-Off-The-Shelf) GPS receiver systems are described in this paper.

Ground Test and Performance Evaluation of Miniaturized AHRS for Small-Scale UAV (소형무인항공기를 위한 소형 경량 AHRS의 지상시험 및 성능 평가)

  • Roh, Min-Shik;Song, Jun-Beom;Song, Woo-Jin;Kang, Beom-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.2
    • /
    • pp.181-188
    • /
    • 2011
  • A small UAVs(Unmaned Aerial Vehicles) have limited by the payload capacity which requires miniaturization of a navigation system. In this paper, the performance of the lightweight and small sized AHRS(Attitude Heading Reference System), which is self-developed, is evaluated at low acceleration environment. The designed AHRS adopts the commercial low-cost MEMS sensors. A quaternion-based attitude calculation method, which eliminates singularity with relatively simple algebra, is used. In an attitude correction algorithm, the Kalman filter is used with accelerometers and magnetometers combined. The fabricated AHRS is also evaluated with reference to a COTS(Commercial Off-The-Shelf) AHRS which reports a number of successful applications to a small UAVs. The test results show that the measurements from the fabricated AHRS provide proper attitude output data with acceptable amount of differences(horizontal axis 0.5$^{\circ}$, vertical axis 1.5$^{\circ}$) in test environment.

Development of Hardware Design Process Enhancement Tool for Flight Control Computer using Modeling and Simulation (M&S 기반의 비행조종컴퓨터 하드웨어 설계 프로세스 개선을 위한 툴 개발)

  • Kwon, Jong-Kwang;Ahn, Jong-Min;Ko, Joon-Soo;Seung, Dae-Beom;Kim, Whan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.1036-1042
    • /
    • 2007
  • It is rather difficult to improve flight control computer(FLCC) hardware(H/W) development schedule due to lack of commercial off-the-self(COTS) tools or target specific tools. Thus, it is suggested to develop an enhanced process utilizing modeling, simulation and virtual reality tools. This paper presents H/W design process enhancement tool(PET) for FLCC design requirements such as FLCC input/output(I/O) signal flow, I/O fault detection, failure management algorithm, circuit logic, PCB assembly configuration and installation utilizing simulation and visualization in virtual space. New tool will provide simulation capability of various FLCC design configuration including shop replaceable unit(SRU) level assembly/dis-assembly utilizing open flight format 3-D modeling data.

Design and Implementation of Fault-tolerant Communication Middleware for a High-reliable Launch Control System (고신뢰성 발사통제시스템을 위한 고장허용 통신 미들웨어 설계 및 구현)

  • Song, Dae-Ki;Jang, Bu-Cheol;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.8
    • /
    • pp.37-46
    • /
    • 2008
  • Launch control system controls the sequence for launching missile in weapon systems. This system have to generate the engagement plan, input information and launch the missile in timeliness requirement. Such a system may fail to operate correctly either due to errors in hardware and software or due to violation of timing constraints. We presented fault-tolerant ethernet for embedded real-time system like launch control system. This approach is designed to handle network faults using dual commercial-off-the-shelf(COTS) network devices. To support fault-tolerant ethernet each node is composed dual channel ethernet and designed the communication middleware for network fault detect and recovery. Especially for time-critical system, the middleware is being developed to achieve that no point of network failure shall take down or cause loss of communication to network nodes.

Design and Implementation of FPGA Based Real-Time Adaptive Beamformer for AESA Radar Applications (능동위상배열 레이더 적용을 위한 FPGA 기반 실시간 적응 빔 형성기 설계 및 구현)

  • Kim, Dong-Hwan;Kim, Eun-Hee;Park, Jong-Heon;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.424-434
    • /
    • 2015
  • Adaptive beamforming algorithms have been widely used to remove interference and jamming in the phased array radar system. Advances in the field programmable gate array(FPGA) technology now make possible the real time processing of adaptive beamforming (ABF) algorithm. In this paper, the FPGA based real-time implementation method of adaptive beamforming system(beamformer) in the pre-processor module for active electronically scanned array(AESA) radar is proposed. A compact FPGA-based adaptive beamformer is developed using commercial off the shelf(COTS) FPGA board with communication via OpenVPX(Virtual Path Cross-connect) backplane. This beamformer comprises a number of high speed complex processing including QR decomposition & back substitution for matrix inversion and complex vector/matrix calculations. The implemented result shows that the adaptive beamforming patterns through FPGA correspond with results of simulation through Matlab. And also confirms the possibility of application in AESA radar due to the real time processing of ABF algorithm through FPGA.

A Publish Subscribe Information Exchange Model and A Novel Matching Algorithm for Navy Shipboard Systems (해군 함정 컴퓨팅 체계 정보교환을 위한 Publish Subscribe 모델 기반 아키텍처 및 매칭 알고리즘)

  • Kim, Hong-Jae;Oh, Sang-Yoon
    • The KIPS Transactions:PartA
    • /
    • v.18A no.5
    • /
    • pp.181-192
    • /
    • 2011
  • Information superiority is an essential factor in modern warfare and it can be archived by efficient information exchange between systems. Various computing systems are installed on the today's navy vessels. However, it is hard to improve interoperability and efficiency of information exchange since the configurations of installed systems are varying. The military standard and commercial standard are mix-used between systems. In this paper, we propose an information exchange architecture based on Pub/Sub model as a communication middleware to improve interoperability as well as enhancing scalability. We also propose a novel tree matching algorithm to improve a performance of PubSub broker. In the proposed algorithm, each tree nodes have information about predicates of subscription that can reduce event matching time. The performance evaluation results show our proposed algorithm reduces time for matching predicates compare with other algorithms.

DEVELOPMENT AND IMPLEMENTATION OF DISTRIBUTED HARDWARE-IN-THE-LOOP SIMULATOR FOR AUTOMOTIVE ENGINE CONTROL SYSTEMS

  • YOON M.;LEE W.;SUNWOO M.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.107-117
    • /
    • 2005
  • A distributed hardware-in-the-loop simulation (HILS) platform is developed for designing an automotive engine control system. The HILS equipment consists of a widely used PC and commercial-off-the-shelf (COTS) I/O boards instead of a powerful computing system and custom-made I/O boards. The distributed structure of the HILS system supplements the lack of computing power. These features make the HILS equipment more cost-effective and flexible. The HILS uses an automatic code generation extension, REAL-TIME WORKSHOP$^{ (RTW$^{) of MATLAB$^{ tool-chain and RT-LAB$^{, which enables distributed simulation as well as the detection and generation of digital event between simulation time steps. The mean value engine model, which is used in control design phase, is imported into this HILS. The engine model is supplemented with some I/O subsystems and I/O boards to interface actual input and output signals in real-time. The I/O subsystems are designed to imitate real sensor signals with high fidelity as well as to convert the raw data of the I/O boards to the appropriate forms for proper interfaces. A lot of attention is paid to the generation of a precise crank/ earn signal which has the problem of quantization in a conventional fixed time step simulation. The detection of injection! command signal which occurs between simulation time steps are also successfully compensated. In order to prove the feasibility of the proposed environment, a simple PI controller for an air-to-fuel ratio (AFR) control is used. The proposed HILS environment and I/O systems are shown to be an efficient tool to develop various control functions and to validate the software and hardware of the engine control system.