• Title/Summary/Keyword: CORSIM RTE

Search Result 7, Processing Time 0.025 seconds

Development of an Online Evaluation Model for Traffic Signal Control System (교통신호제어시스템 온라인 평가모형 개발)

  • Go, Gwang-Yong;Lee, Seung-Hwan
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.31-40
    • /
    • 2008
  • There have been a lot of efforts to find more accurate evaluation methods for traffic signal control effectiveness for a long period of time. Nowadays a newly advanced method called HILSS, 'Hardware-in-the-Loop-Simulation System', is used to evaluate the overall traffic control's effectiveness including physical control environments like communication conditions, hardware performance, controller's mechanical operations and so on. In this study, an Online-HILSS model has been developed, which runs on CORSIM(5.0) micro traffic simulation model on-lined to COSMOS. For the verification of the model, three tests are performed as follows; (1) a comparison of TMC's timing plan with the simulated green interval, (2) as a case study, a delay distribution comparison of the online simulation with the CORSIM stand-alone simulation. The result of the first test shows that the model can run the simulation green interval by TMC's timing plan correctly. The result of second test shows that the online simulation of the model brings the same simulation results with the CORSIM offline simulation in case of the same timing plan. These results mean that the online evaluation model could be a reliable tool to measure a real-time signal control effectiveness of a wide area street network with the HILSS method.

A Study on the Active Transit Signal Priority Control Algorithm based on Bus Demand using UTIS (UTIS를 활용한 수요 기반의 능동형 버스우선신호 제어 알고리즘에 관한 연구)

  • Hong, Gyeong-Sik;Jeong, Jun-Ha;An, Gye-Hyeong;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.6
    • /
    • pp.107-116
    • /
    • 2011
  • In this paper, we implement an algorithm of transit signal priority control that not only maximizes service quality and efficiency of bus, but also minimizes the control delay of passenger cars using UTIS currently being deployed and operated in Seoul national capital area. For this purpose, we propose an algorithm that coordinates the strength of TSP by estimating bus demand. Typically, the higher the strength of TSP is on main street, the bigger the control delay is on the cross street. Motivated by this practical difficulty, we proposes an algorithm that coordinates TSP's strength by checking the degree of saturation of cross street. Also, we verify the possibility of field implementation via simulation analysis using CORSIM RTE based HILS (Hardware In the Loop Simulation). The result shows that travel time of bus improves about 10 percent without increasing control delay of passenger cars by TSP. We expect the result of this research to contribute to increasing the overall transit ridership in this country.

Development of the Emergency Vehicle Preemption Control System Based on UTIS (UTIS 기반의 긴급차량 우선신호제어 시스템 개발)

  • Hong, Kyung-Sik;Jung, Jun-Ha;Ahn, Gye-Hyeong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.2
    • /
    • pp.39-47
    • /
    • 2012
  • In this paper, we have developed the system of emergency vehicle preemption signal control based on UTIS(Urban Traffic Information System) which have been deployed and operated in the national capital area. It considered the turning direction(through or left turn) of emergency vehicle at the signalized intersection in order to provide the consecutive progression of emergency vehicle and minimize the control delay of passenger cars. we adopted several EVP control modes such as phase insertion and phase adjustment mode. Also, we evaluated the possibility of field implementation via simulation analysis using CORSIM RTE(Run Time Extension) based HILS(Hardware In the Loop Simulation). We expect that the result of this research contribute to providing the right-of-way to emergency vehicle in this country.

A Comparison Study of Different Offset Transition Lengths in Simulation Environment (모의실험 환경에서의 옵셋전이길이 비교연구)

  • Kim, Jin-Tae;Chang, Myung-Soon;Park, Jae-Wan
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.43-52
    • /
    • 2005
  • Signal timing transition has recently been highlighted with Adaptive Traffic Control Systems (ATCS) providing advanced traffic signal operation including real-time grouping of coordinated intersections. Signal timing transition occurs when such signal timings as cycles and offsets are changed at coordinated intersections. Setting a proper length of signal timing transition has become in interest for real-time coordination. This paper presents a study verifying the effects of different lengths of signal timing transition. Four different transition lengths were tested and compared in simulation environment. They include a single, double, treble, quadruple cycle length transitions. The number of cycles represents the ones used (interpolation) for transition. Signal timings were controlled to be adjusted uniformly and discretely during a transition period. Transition times considered in the test are within ranges of ${\pm}20$ percents of cycle lengths. It was found from the study that a single cycle transition performs better than or at least equal to the ones from the other with fifteen different operational conditions, which are developed based on a hypothetical arterial. It was suggested that a single cycle length transition be beneficial when amount of transition is within ${\pm}20$ percents of cycle lengths.