• Title/Summary/Keyword: CORROSION

Search Result 7,492, Processing Time 0.039 seconds

Corrosion evaluation of a newly developed high-strength steel in marine environments

  • Jeong, Jin-A;Ko, Kwon-Heum;Lee, Du-Young;Lee, Sang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.883-887
    • /
    • 2016
  • This study aims to evaluate the corrosion behavior of a newly developed high-strength steel in marine environments. Metals used in seawater are easily deteriorated because of the presence of corrosive species such as chloride ions in it. Seawater causes much higher corrosion than fresh water. Thus, the corrosion of steel in marine environment has been recognized as a crucial problem in designing structures which cannot be cathodically protected. In this study, the corrosion resistance of a newly developed high-strength steel was evaluated. Four different specimens were tested to confirm the corrosion resistance. The exposure corrosion test was carried out by exposing the specimens to different marine environments such as atmospheric, tidal, splash, and submerged zones for two years. The specimens taken out from each location were cleaned ultrasonically and chemically prior to the evaluation of their corrosion resistance by the weight loss method. Finally, the pitting depth of the specimens was also measured to evaluate their pitting corrosion. The conditions used for the corrosion test were similar to the environmental conditions. The corrosion test results revealed that the corrosion rate and pitting corrosion of the newly developed high-strength steel was lower than that of the other carbon steels.

Internal Corrosion Control of Drinking Water Pipes by pH and Alkalinity Control and Corrosion Inhibitor (수질제어 및 부식억제제에 의한 상수도관의 내부부식 제어)

  • Kuh, Sungeun;Woo, Dalsik;Lee, Doojin;Kim, Juwhan;Ahn, Hyowon;Moon, Kwangsoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.215-223
    • /
    • 2006
  • The internal corrosion of water distribution systems is the main cause for the problem of the public health threat as well as water leakage in the damaged pipeline, red water, and odor and taste of the tap water. This study was examined the effect of chemicals used for pH and alkalinity control and corrosion inhibitors for producing the optimal corrosion control method. Corrosion study at different pH and alkalinity indicated that these control using alkaline chemicals was effective in corrosion rate, Fe release reduction, but examined to be increased in turbidity and corrosion-by-products(TTHMs) problems. The turbidity was slightly increased, requiring caution in controlling corrosion with $Ca(OH)_2$. At pH 9.0, TTHMs concentration is increased two times corn pared with non-control of pH. Using the pipe which had experienced 28 years of exposure, iron release was decreased with the corrosion inhibitor. Consequently, pH, Alkalinity control method using alkaline chemicals must be complemented by corrosion inhibitor application for efficient corrosion control.

Accelerated Prediction Methodologies to Predict the Outdoor Exposure Lifespan of Galvannealed Steel

  • Kim, Ki Tae;Yoo, Young Ran;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.86-91
    • /
    • 2019
  • Generally, atmospheric corrosion is the electrochemical degradation of metal that can be caused by various corrosion factors of atmospheric components and weather, as well as air pollutants. Specifically, moisture and particles of sea salt and sulfur dioxide are major factors in atmospheric corrosion. Using galvanized steel is one of the most efficient ways to protect iron from corrosion by zinc plating on the surface of the iron. Galvanized steel is widely used in automobiles, building structures, roofing, and other industrial structures due to their high corrosion resistance relative to iron. The atmospheric corrosion of galvanized steel shows complex corrosion behavior, depending on the plating, coating thickness, atmospheric environment, and air pollutants. In addition, corrosion products are produced in different types of environments. The lifespans of galvanized steels may vary depending on the use environment. Therefore, this study investigated the corrosion behavior of galvannealed steel under atmospheric corrosion in two locations in Korea, and the lifespan prediction of galvannealed steel in rural and coastal environments was conducted by means of the potentiostatic dissolution test and the chemical cyclic corrosion test.

Electrochemical Approach on the Corrosion During the Cavitation of Additive Manufactured Commercially Pure Titanium (적층가공 방식으로 제조된 CP-Ti의 캐비테이션 중 부식에 대한 전기화학적 접근)

  • Kim, K.T.;Chang, H.Y.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.310-316
    • /
    • 2018
  • The effect of passive film on corrosion of metals and alloys in a static corrosive environment has been studied by many researchers and is well known, however few studies have been conducted on the electrochemical measurement of metals and alloys during cavitation corrosion conditions, and there are no test standards for electrochemical measurements 'During cavitation' conditions. This study used commercially additive manufactured(AM) pure titanium in tests of anodic polarization, corrosion potential measurements, AC impedance measurements, and repassivation. Tests were performed in 3.5% NaCl solution under three conditions, 'No cavitation', 'After cavitation', and 'During cavitation' condition. When cavitation corrosion occurred, the passive current density was greatly increased, the corrosion potential largely lowered, and the passive film revealed a small polarization resistance. The current fluctuation by the passivation and repassivation phenomena was measured first, and this behavior was repeatedly generated at a very high speed. The electrochemical corrosion mechanism that occurred during cavitation corrosion was based on result of the electrochemical properties 'No cavitation', 'After cavitation', and 'During cavitation' conditions.

The Effect of Seawater Temperature on the Electrochemical Corrosion Behaviour of Stainless Steels and Anodized Aluminum Alloys (스테인리스강과 양극산화된 알루미늄 합금의 전기화학적 부식특성에 미치는 해수온도의 영향)

  • Chong, Sang-Ok;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.85-93
    • /
    • 2021
  • The corrosion damage of materials in marine environment mainly occurs by Cl- ions due to the breakdown of passive films. Additionally, various characteristics in seawater such as salinity, temperature, immersion time, flow rate, and biological activity also affect corrosion characteristics. In this study, the corrosion characteristics of stainless steels (STS 304 and STS 316L) and anodized aluminum alloys (AA 3003 and AA 6063) were evaluated with seawater temperature parameters. A potentiodynamic polarization experiment was conducted in a potential range of -0.25 V to 2.0 V at open circuit potential (OCP). Corrosion current density and corrosion potential were obtained through the Tafel extrapolation method to analyze changes in corrosion rate due to temperature. Corrosion behavior was evaluated by measuring weight loss before/after the experiment and also observing surface morphology through a scanning electronic microscope (SEM) and 3D microscopy. Weight loss, maximum damage depth and pitting damage increased as seawater temperature increased, and furthermore, the tendency of higher corrosion current density with an increase of temperature attributed to an increase in corrosion rate. There was lower pitting damage and lower corrosion current density for anodized aluminum alloys than for stainless steels as the temperature increased.

Three-dimensional Computational Modeling and Simulation of Intergranular Corrosion Propagation of Stainless Steel

  • Igarashi, T.;Komatsu, A.;Motooka, T.;Ueno, F.;Yamamoto, M.
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.105-111
    • /
    • 2021
  • In oxidizing nitric acid solutions, stainless steel undergoes intergranular corrosion accompanied by grain dropping and changes in the corrosion rate. For the safe operation of reprocessing plants, this mechanism should be understood. In this study, we constructed a three-dimensional computational model using a cellular automata method to simulate the intergranular corrosion propagation of stainless steel. The computational model was constructed of three types of cells: grain (bulk), grain boundary (GB), and solution cells. Model simulations verified the relationship between surface roughness during corrosion and dispersion of the dissolution rate of the GB. The relationship was investigated by simulation applying a constant dissolution rate and a distributed dissolution rate of the GB cells. The distribution of the dissolution rate of the GB cells was derived from the intergranular corrosion depth obtained by corrosion tests. The constant dissolution rate of the GB was derived from the average dissolution rate. Surface roughness calculated by the distributed dissolution rates of the GBs of the model was greater than the constant dissolution rates of the GBs. The cross-sectional images obtained were comparable to the corrosion test results. These results indicate that the surface roughness during corrosion is associated with the distribution of the corrosion rate.

Atmospheric Corrosion Model of Carbon Steel Considering Relative Humidity, Chloride Deposition Rate, and Surface Particles (상대 습도, 염화물 누적률, 표면 입자를 고려한 탄소강의 대기부식 모델)

  • Jinsoo Shin;Hyeok-Jun Kwon;Hongseok Kim;Dooyoul Lee
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.324-333
    • /
    • 2024
  • Atmospheric corrosion poses a significant threat to durability of metallic materials and safety of structures, making precise prediction of corrosion rates crucial in industrial and engineering settings. Understanding the exact rate of corrosion is essential. However, accurate inclusion of various environmental factors that can influence atmospheric corrosion in the calculation of corrosion rate is a complex challenge. This study introduces a physics-based model that incorporates electrochemical methods and considers active surface area affected by surface contaminants to estimate atmospheric corrosion rate of carbon steel. The model can evaluate corrosion levels using key factors such as chloride deposition rate, relative humidity, and the presence of surface particles. By integrating these considerations, this model moves beyond empirical estimations, providing a more stable prediction of corrosion rate that is less susceptible to environmental variations. This model provides a robust tool for defense applications, offering precise insights into the dynamics of atmospheric corrosion that could enhance the maintenance and safety of weapon systems.

Experimental Study on Corrosion Rate in Concrete

  • Jang, BongSeok;Oh, ByungHwan
    • Corrosion Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.34-38
    • /
    • 2004
  • The corrosion of reinforcement is a very important factor on the serviceability and safety of reinforced concrete structures. The corrosion rate influences directly the cover failure time of reinforced concrete structures because the corrosion rate is used to estimate the amount of corrosion and thus expansive pressure due to corrosion. In this study, several series of experiments are performed considering the chloride concentration in artificial pore solution. The potentials are measured according to the applied current density and then corrosion current densities are obtained from the Tafel plot for various chloride concentrations. The measured corrosion rates show good correlation with those of other researchers.

The study on the protection method from corrosion by the sealant injection on the unpainted weathering steel top flange outer surface of box girder (도장이 필요없는 내후성강 박스거더 상부 플랜지외부면 방식제 주입을 통한 방식공법 연구)

  • Song, Chang-Young
    • Corrosion Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.139-144
    • /
    • 2014
  • In corrosion-sensitive area of exsisting unpainted weathering steel bridge with closed box girder structure. there are some serious local corrosion problems because of rain water or dew water which can not be solved by conventional maintenance method. These problems must be technically controled because of the influence on the safety of bridge. This study is the first stage of developing the economic corrosion control manual for these local corrosion problems. Through the injecting experiment of tar sealant into the crevice of mock-up equipment, it was proofed that the corrosive sealant can be useful to corrosion control at crevice of corrosion sensitive area.

The Effect of Solution Treatment on Intergranular Corrosion Resistance of a New Type Ultra Low Carbon Stainless Steel

  • Julin, Wang;Nannan, Ni;Qingling, Yan;Lingli, Liu
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.140-146
    • /
    • 2007
  • In the paper, with corrosion velocity measurement and metallographic observation on specimens after sulfuric acid/ferric sulfate boiling experiment, intergranular corrosion tendency of the new type ultra low carbon stainless steel developed by ourselves which experienced solution treatment at different temperatures was evaluated. A VHX 500 super depth field tridimensional microscope was used to observe corrosion patterns on the sample surfaces. The depth and width of grain boundary corrosion groove were measured by the tridimensional microscope, which indicated that the corrosion degrees of the samples which received solution treatment at different temperatures are quite different. Transgranular corrosion at different degree occurred along with forged glide lines. After comparison it was proved that the stainless steel treated at $1100^{\circ}C$ performs very well against intergranular corrosion.