• 제목/요약/키워드: CONDENSATION

검색결과 2,590건 처리시간 0.031초

확장형 발코니 공동주택의 창호종류에 따른 결로 및 온열환경에 관한 연구 (A Study on the Condensation and Thermal Environment according to Window Systems Types Installed for a Extended-Balcony Apartment)

  • 윤종호;안영섭;김병수
    • KIEAE Journal
    • /
    • 제7권5호
    • /
    • pp.87-92
    • /
    • 2007
  • As expansion of balconies at apartments has been legalized, the major function of the balconies as a thermal buffer zone is disappearing. This weakens the ability of window to insulate heat and multiplies surface condensation. Thus more and more residents require solutions to increasing surface condensation and aggravation in thermal comfort. This study intends to provide basic data by evaluating performance of triple layered Low-E windows, triple layered clear windows, double layered Low-E windows and double layered clear window used for expanded balconies and marketed within the country in terms of surface condensation and thermal environment through simulation. Results revealed that no surface condensation occurred at double layered Low-E windows and triple layered Low-E windows. Surface condensation took place at double layered clear windows and triple layered clear windows at a relative humidity of 60%. Thermal environment analysis suggested that double layered clear windows showed the most time falling into the range of comfort at $23^{\circ}C$. The figure were $22^{\circ}C$ for triple layered clear windows, $22^{\circ}C$ for double layered Low-E windows and $21^{\circ}C$ for triple layered Low-E windows.

겨울철 공동주택에서 붙박이장 내 보조난방장치를 활용한 결로 저감 효과 평가 (Assessment of Utilization of Auxiliary Heating Device for Prevention of Condensation in Built-in Furniture in Winter)

  • 이현화;임재한;송승영
    • 대한건축학회논문집:구조계
    • /
    • 제33권12호
    • /
    • pp.99-106
    • /
    • 2017
  • Recently, the condensation and mold problems of apartment buildings has been growing due to high insulation and high air-tightness performance for energy saving. Most of all, occupants in residential buildings has suffered from property damages due to the condensation and mold of built-in furniture. Condensation at built-in furniture were generally found in winter at the of furniture's back panels, adjacent surfaces of wall, floor and ceiling. The aim of paper is to analyze the characteristics of adjacent area around built-in furniture's condensation problem and the thermal environment around the built-in furniture in winter through the field measurements at apartment buildings. In this research, the thermal conditions and surface temperature around the built-in furniture were measured during winter season. In this research, we analyzed thermal conditions for built-in furniture which were applied and not applied auxiliary heating device. In results, it is important to consider increasing surface temperature for using heater and decreasing absolute humidity due to the occupants' behavior around built-in furniture for preventing condensation.

기존 공동주택 붙박이장에서 겨울철 결로 방지를 위한 보조난방장치 운전 성능 평가 (Operation Performance Evaluation on Auxiliary Heating Device to Prevent Condensation adjacent to Built-in Furniture of Apartment Units in Winter)

  • 이채린;이현화;임재한;송승영
    • 한국건축친환경설비학회 논문집
    • /
    • 제12권6호
    • /
    • pp.567-578
    • /
    • 2018
  • The purpose of this study was to evaluate condensation prevention for condensation vulnerable areas around built-in furniture of apartment buildings by applying auxiliary heating device. Recently, the condensation and mold problems of apartment buildings has been growing due to high insulation and high air-tightness performance for energy saving. Condensation at built-in furniture were generally found in winter at the of furniture's back panels, adjacent surfaces of wall, floor and ceiling. These problems are related to the weather conditions and indoor room conditions in winter. To solve these problems, auxiliary heating device was developed and could be installed. The aim of paper is to analyze the thermal environment around the built-in furniture which were applied and not applied auxiliary heating device in winter. In results, it was possible to increase the surface temperature of vulnerable areas around built-in furniture by applying auxiliary heating device, and to minimize condensation problems by using the minimum device.

Multi-scale simulation of wall film condensation in the presence of non-condensable gases using heat structure-coupled CFD and system analysis codes

  • Lee, Chang Won;Yoo, Jin-Seong;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2488-2498
    • /
    • 2021
  • The wall film-wise condensation plays an important role in the heat transfer processes of heat exchangers, refrigerators, and air conditioner. In the field of nuclear engineering, steam condensation is often utilized in safety systems to remove the core decay heat under both transient and accident conditions. In particular, passive containment cooling system (PCCS), are designed to ensure containment safety under severe accident conditions. A computational fluid dynamics (CFD) scale analysis has been conducted to calculate the heat transfer rate of the PCCS. However, despite the increase in computing power, there are challenges in the long-term transient simulation of containment using CFD scale codes. In this study, a heat structure coupling between the CFD and system analysis codes was performed to efficiently analyze PCCS. In addition, the component unstructured program for interfacial dynamics (CUPID) was improved to analyze the condensation behavior of ternary gas mixtures. Thereafter, the condensation heat transfer on the primary side was calculated using the improved CUPID and CFD code, whereas that on the secondary side was simulated using MARS. Both the coupled codes were validated against the CONAN facility database. Finally, conjugate heat transfer simulations with wall condensation in the presence of non-condensable gases were appropriately performed.

과냉각수조에서 증기응축 특성에 관한 실험적 연구 (Experimental Study on Characteristics of Steam Condensation in a Sub-cooled Water Pool)

  • 김환열;조석;송철화;정문기;최상민
    • 에너지공학
    • /
    • 제8권2호
    • /
    • pp.298-308
    • /
    • 1999
  • 과냉각수조로 분사되는 증기의 직접접촉 응축특성을 알아보기 위하여 다섯 개의 수평 노즐에 대해 증기 질량유량과 수조 온도를 여러 가지로 변화시키면서 실험적 연구를 수행하였다. 증기응축현상을 육안관찰과 고속 비디오 카메라를 사용한 방법으로 분석한 결과, 안정된 증기제트인 경우 증기 질량속과 수조온도가 변화함에 따라 타원형 및 원추형 증기제트 형상이 나타나는 것을 관찰하였다. 증기제트 팽창비, 증기제트 길이 및 응축연전달계수를 구하였고, 증기 질량속, 수조온도 및 노즐 내경이 미치는 영향을 분석하였다. 증기제트 길이와 응축열전달계수를 증기 질량속 및 응축추진 포텐셜의 함수로 나타낸 상관식을 구하였다. 증기제트 내부와 주위 수조온도 분포를 구했으며 증기 질량속, 수조온도 및 노즐 내경이 미치는 영향을 분석하였다. 처깅, 천이처깅, 응축진동, 안정응축, 방울응축진동 및 간헐진동응축 등 여섯 가지 영역으로 구분된 응축 영역도를 작성하였다. 그 외, 수조 벽면에서의 동압을 측정하였고, 증기 질량속과 수조온도에 따라 변화하는 증기 응축모드와 동압과는 밀접한 연관성이 있음을 확인하였다.

  • PDF

RELAP5 Analysis of a Condensation Experiment in an Inverted U-tube

  • Park, Chul-Jin;Lee, Sang-Yong
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.383-388
    • /
    • 1995
  • Two-phase transient phenomena in the noncondensable gas-filled closed loop was investigated numerically using the RELAP5/MOD3 version 3.1 computer code. The condensation heat transfer correlation for noncondensable gases was studied in detail. Two modes of the reflux condensation which can be characterized by countercurrent flow of steam and its condensed water and the oscillatory between reflux condensation and natural circulation were predicted well. However, the natural circulation mode which the condensed water carried over the U-bend concurrently with steam was failed to predict.

  • PDF

Implementation of Code Generator of Particle Filter

  • Lee, Yang-Weon
    • Journal of information and communication convergence engineering
    • /
    • 제8권5호
    • /
    • pp.493-497
    • /
    • 2010
  • This paper address the problem of tracking multiple objects encountered in many situation in developing condensation algorithms. The difficulty lies on the fact that the implementation of condensation algorithm is not easy for the general users. We propose an automatic code generation program for condensation algorithm using MATLAB tool. It will help for general user who is not familiar with condensation algorithm to apply easily for real system. The merit of this program is that a general industrial engineer can easily simulate the designed system and confirm the its performance on the fly.

초등학교 학생들의 증발과 응결 개념에 대한 연구 (Study on students과 concepts of evaporation and condensation in elementary school)

  • 이용복;이성미
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제17권1호
    • /
    • pp.89-103
    • /
    • 1998
  • We study that what kind of the concepts of evaporation and condensation students of elementary school have. The results are following. (1) The students have simple concepts of evaporation on natural circumstance. However, they don't understand about various effect on evaporation. (2) They don't know where the evaporized water is comming from. (3) They have experiences on observing condensation of wale. (70%), however don't know that the water is evaporized in the air. (4) They have more understanding about evaporation, more correct concepts on condensation in circulation of water.

  • PDF

Convenient Route to Core-modified Corroles by Acid-catalyzed Condensation of Furylpyrromethanes and Dipyrromethanes

  • 이창희;조원섭;가재원;김한재;이필호
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권4호
    • /
    • pp.429-433
    • /
    • 2000
  • Corroles and oxacorroles were synthesized by acid-catalyzed, 2+2 condensation. The condensation afforded different corroles bearing core-heteroatoms at the predesignated locations. Regioselective a- a’ linkage be-tween pyrrole and furan or betwee n pyrrole and pyrrole was achieved by keeping the linking carbon at different position of starting dipyrromethanes. The condensation was only fruitful when furan-containing dipyrromethanes were condensed.

초소수성 코팅 튜브에서의 비응축가스 영향에 대한 응축 열전달 연구 (The effects of non-condensable gas on condensation heat transfer on a super-hydrophobic surface tube)

  • 지대윤;김대호;이권영
    • 한국산학기술학회논문지
    • /
    • 제19권4호
    • /
    • pp.517-524
    • /
    • 2018
  • 본 연구의 목표는 수평 관외 초소수성 튜브에서 비응축가스(NCG)의 영향을 관찰하고, 이를 일반 알루미늄 튜브의 응축 현상과 비교하는 것이다. 초소수성 튜브 제작을 위해 Self-Assembled Monolayer(SAM) 코팅으로 알루미늄 튜브의 외부를 표면개질 했다. 응축 성능을 나타내기 위해 총합 열전달계수를 사용하였고, 이 값으로 응축 성능을 비교 검토하였다. 본 연구의 주요 변수는 비응축가스 질량 분율로, 0.08에서 0.45의 범위에서 실험을 진행하였다. 응축 실험을 통해 비응축가스 질량 분율이 낮아질수록 응축 성능이 SAM 튜브와 일반 튜브에서 모두 향상되는 것을 확인했다. SAM 튜브에서 적응축 열전달 성능은 일반 튜브 대비하여 평균 약 1.9배에서 2.5배 정도 큰 것을 관찰하였다. SAM 튜브에서 비응축가스 질량 분율이 낮아지면서 응축 성능 상승폭이 감소하게 되는데, 이는 Flooded 응축 현상이 발현되었기 때문이다. 응축이 더 활발하게 진행되면 SAM 튜브에서 막응축이 일어나는 것을 관찰하였고, 이 때 성능은 일반 알루미늄 튜브보다도 저하된 성능을 보였다. SAM 알루미늄 튜브에서 Flooded 응축과 막응축이 일어나는 원인으로 표면에서의 Pinning 효과를 이용하여 설명하였다. 결론적으로, SAM 튜브를 실제 응축기에 적용해 표면개질로 인한 응축 성능 개선 효과를 얻기 위해서는 적응축 또는 Flooded 응축이 일어나는 조건으로 응축기 내 환경 조성을 해야 한다.