• Title/Summary/Keyword: COMS, Communication Ocean Meteorological Satellite

Search Result 199, Processing Time 0.021 seconds

A STUDY ON THE EAST/WEST STATION KEEPING PLANNING CONSIDERING WHEEL OFF-LOADING

  • Lee, Sang-Cherl;Park, Bong-Kyu;Kim, Bang-Yeop;Ju, Gwang-Hyeok;Yang, Koon-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.263-266
    • /
    • 2006
  • Now, on the developing COMS(Communication, Ocean and Meteorological Satellite) has solar panel on the South panel only. Therefore, the wheel off-loading has to be performed periodically to reduce a induced momentum energy by a asymmetric solar panel. One of two East/West station keeping maneuver to correct simultaneously longitude and eccentricity, orbit corrections may be performed during one of the two wheel off-loading manoeuvres per day to get enough observation time for meteorological and ocean sensor. In this paper, we applied a linearized orbit maneuver equation to acquire maneuver time and delta-V. Nonlinear simulation for the station keeping is performed and compared with general station keeping strategy for fuel reduction.

  • PDF

Structural Design Development of GOCI

  • Yeon Jeoung-Heum;Kang Song-Doug;Kim Jongah;Kang Gurrl.sil;Myung Hwan-Chun;Youn Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.104-107
    • /
    • 2005
  • COMS(Communication, Ocean, and Meteorological Satellite) is the geostationary satellite for the mission of satellite communication, ocean monitoring, and meteorological service. It is scheduled to be launched at the end of 2008. Ocean payload of COMS named as GOCI(Geostationary Ocean Color Imager) observes ocean color and derives the chlorophyll concentrlition, the concentration of dissolved organic material and so on. In operational oceanography, satellite derived data products are used to provide forecasting and now casting of the ocean and coastal water state. In this work, conceptual design of structural part of GOCI is carried out and two baseline concepts are proposed. The one is dioptric module that uses lens system and the other is TMA(Three Mirror Anastigmat) module that uses mirror system. Trade-off studies between two concepts are investigated by considering optical and mechanical performances. Finally, on-going tasks and future development plan are briefly discussed.

  • PDF

COMPONENT TEST STRATEGY FOR COMS ON-BOARD SOFTWARE USING ATTOL

  • Park, Su-Hyun;Kang, Soo-Yeon;Yang, Koon-Ho;Choi, Seong-Bong
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.175-178
    • /
    • 2007
  • COMS (Communication Ocean Meteorological Satellite) is the geostationary satellite being developed by Korea Aerospace Research Institute for multi-mission: experimental communication, ocean monitoring and meteorological observations. The COMS operation is controlled by the on-board software running on the spacecraft central computer. The software is written in ADA language and developed under the software life cycle: Requirement analysis, Design, Implementation, Component test and Integration test. Most functional requirements are tested at component level on a software component testing tool, ATTOL. ATTOL provides a simple way to define the test cases and automates the test program generation, test execution and test analysis. When two or more verified components are put together, the integration test starts to check the non-functional requirements: real-time aspect, performance, the HW/SW compatibility and etc. This paper introduces the COMS on-board software and explains what to test and how to test the on-board software at component level using ATTOL.

  • PDF

COMPONENT TEST STRATEGY FOR COMS ON-BOARD SOFTWARE USING ATTOL

  • Park, Su-Hyun;Kang, Soo-Yeon;Yang, Koon-Ho;Choi, Seong-Bong
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.460-463
    • /
    • 2007
  • COMS (Communication Ocean Meteorological Satellite) is the geostationary satellite being developed by Korea Aerospace Research Institute for multi-mission: experimental communication, ocean monitoring and meteorological observations. The COMS operation is controlled by the on-board software running on the spacecraft central computer. The software is written in ADA language and developed under the software life cycle: Requirement analysis, Design, Implementation, Component test and Integration test. Most functional requirements are tested at component level on a software component testing tool, ATTOL. ATTOL provides a simple way to define the test cases and automates the test program generation, test execution and test analysis. When two or more verified components are put together, the integration test starts to check the non-functional requirements: real-time aspect, performance, the HW/SW compatibility and etc. This paper introduces the COMS on-board software and explains what to test and how to test the on-board software at component level using ATTOL.

  • PDF

Assessment of Outgoing Longwave Radiation using COMS : Cheongmi and Sulma Catchments (천리안 위성을 사용한 방출장파복사량 검증 : 청미천, 설마천)

  • Baek, Jong Jin;Sur, Chanyang;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.465-476
    • /
    • 2013
  • The outgoing longwave radiation (Rlu) for estimation of evapotranspiration is essential to understand energy balance of earth. However, the ground measurement based Rlu has a limitation that the observation can just stand for the exact site, not for an area. In this study, remote sensing technique is adopted to compensate the limitation of ground observation using the geostationary satellite. We calculated Rlu using Communication, Ocean and Meteorological Satellite (COMS). We validated Rlu from COMS with Cheongmicheon (CFK) and Sulmacheon (SMK) flux tower observations controlled by Hydrological Survey Center. The results showed that Rlu from COMS represented reasonable correlation with ground based measurement. Based on the results in this study, COMS will be able to be used for estimation of evapotranspiration.

THERMAL MODEL CORRELATION OF A GEOSTATIONARY SATELLITE (정지궤도 위성의 열해석 모델 보정)

  • Jun, H.Y.;Kim, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.230-235
    • /
    • 2011
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and was developed by KARI for communication, ocean and meteorological observations. COMS was tested under vacuum and very law temperature conditions in order to correlate thermal model and to verify thermal design. The test was performed by using KARI large thermal vacuum chamber. The COMS S/C thermal model was successfully correlated versus the 2 thermal balance test phases. After model correlation, temperatures deviation of all individual unit were less than $5^{\circ}C$ and global deviation and standard deviation also satisfied the requirements, less than $2^{\circ}C$ and $3^{\circ}C$. The final flight prediction was performed by using the correlated thermal model.

  • PDF

THERMAL MODEL CORRELATION OF A GEOSTATIONARY SATELLITE (지구 정지궤도 위성의 열해석 모델 보정)

  • Jun, H.Y.;Kim, J.H.
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.59-65
    • /
    • 2011
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and was developed by KARI for communication, ocean and meteorological observations. COMS was tested under vacuum and very low temperature conditions in order to correlate thermal model and to verify thermal design. The test was performed by using KARI large thermal vacuum chamber. The COMS S/C thermal model was successfully correlated versus the 2 thermal balance test phases. After model correlation, temperatures deviation of all individual units were less than $5^{\circ}C$ and global deviation and standard deviation also satisfied the requirements, less than $2^{\circ}C$ and $3^{\circ}C$. The final flight prediction was performed by using the correlated thermal model.

Scan Mirror Emissivity Compensation for the COMS MI (천리안위성 기상탑재체의 스캔미러 방사율 보정)

  • S대, Seok-Bae;Jin, Kyoung-Wook;Ahn, Sang-Il
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.156-166
    • /
    • 2011
  • COMS (Communication Ocean and Meteorological Satellite), the Korea's first geostationary Earth observation satellite, started to operate 24 hours to observe Land/Ocean/Atmosphere with the MI (Meteorological Imager) and GOCI (Geostationary Ocean Color Imager). After the successful completion of the IOT (In-Orbit Test), the satellite is in normal operation from April of 2011. This paper describes an algorithm for scan mirror emissivity compensation of the COMS MI and its software implementation.

Implementation and Validation of Earth Acquisition Algorithm for Communication, Ocean and Meteorological Satellite

  • Park, Sang-Wook;Lee, Young-Ran;Lee, Byoung-Sun;Hwang, Yoo-La;Lee, Un-Seob
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.345-354
    • /
    • 2011
  • Earth acquisition is to solve when earth can be visible from satellite after Sun acquisition during launch and early operation period or on-station satellite anomaly. In this paper, the algorithm and test result of the Communication, Ocean and Meteorological Satellite (COMS) Earth acquisition are presented in case of on-station satellite anomaly status. The algorithms for the calculation of Earth-pointing attitude control parameters including those attitude direction vector, rotation matrix, and maneuver time and duration are based on COMS configuration (Eurostar 3000 bus). The coordinate system uses the reference initial frame. The constraint calculating available time-slot to perform the earth acquisition considers eclipse, angular separation, solar local time, and infra-red earth sensor blinding conditions. The results of Electronics and Telecommunications Research Institute (ETRI) are compared with that of the Astrium software to validate the implemented ETRI software.

Estimation and Statistical Characteristics of the Radius of Maximum Wind of Tropical Cyclones using COMS IR Imagery (천리안 위성 적외 영상 자료를 이용한 태풍의 최대풍속반경 산출 및 통계적 특성)

  • Kwon, MinHo
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.473-481
    • /
    • 2012
  • The objective methods estimating the radius of maximum wind (RMW) of tropical cyclones (TCs) are discussed using infraed (IR) imagery of geostationary satellite, and an alternative method is suggested that can estimate RMW in the TCs having eyes using IR imagery. The RMW-estimating methods are based on the characteristic structure of the eyewall of a tropical cyclone. RMW is dependent upon the radius of the eye and the distance from the center to the top of the most developed convective cloud. In order to test these methods, blackbody brightness temperature of Korean geostationary satellite, COMS (Communication, Ocean, and Meteorological Satellite) IR imagery are utilized in this study. The estimated RMWs are compared with surface winds of ASCAT (Advanced Scatterometer) of a polar orbiting satellite.