• Title/Summary/Keyword: COD (chemical oxygen demand)

Search Result 516, Processing Time 0.026 seconds

Electrochemical Determination of Chemical Oxygen Demand Based on Boron-Doped Diamond Electrode

  • Dian S. Latifah;Subin Jeon;Ilwhan Oh
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.215-221
    • /
    • 2023
  • A rapid and environment-friendly electrochemical sensor to determine the chemical oxygen demand (COD) has been developed. The boron-doped diamond (BDD) thin-film electrode is employed as the anode, which fully oxidizes organic pollutants and provides a current response in proportion to the COD values of the sample solution. The BDD-based amperometric COD sensor is optimized in terms of the applied potential and the solution pH. At the optimized conditions, the COD sensor exhibits a linear range of 0 to 80 mg/L and the detection limit of 1.1 mg/L. Using a set of model organic compounds, the electrochemical COD sensor is compared with the conventional dichromate COD method. The result shows an excellent correlation between the two methods.

Geochemical Investigations of Contaminated River Waters Part II-Chemical Oxygen Demand of River Water and Industrial Waste Water in Seoul (汚濁河川水의 地球化學的인 硏究 (第 II 報) 서울市內 河川水 및 工場排水의 化學的 酸素要求量)

  • Lee, Yong-Keun
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.5-12
    • /
    • 1970
  • River water and industrial waste water in Seoul were studied by means of chemical oxygen demand(COD) as an indicator for water pollution, from August 1967 to July 1968. Rivers flowing through residential and industrial areas are badly contaminated and COD of water in Han River increases as it progresses to downstream. Seasonal variation of COD showed that higher value of COD was observed in spring and lower in autumn. It is clear that the seasonal variation of COD is influenced by the precipitation. Close relationship was found between COD and population density. The lowest COD curve obtained by plotting COD values against population density and show that the curve slopes upward. The discontinuation of the curve was shown at the population density of 14,000/km$^2$; an increase in COD was acute over the population density of 14,000/km$^2$.

  • PDF

Development of Continuous Real-time COD Measurement Sensor with Double Beam and Multiple Wavelength Analysis (더블 빔 구조, 다파장 분석을 적용한 연속식 실시간 COD 측정 센서 개발)

  • Lee, Joon-Seok;Shin, Daejung;Hyoung, Gi-Woo;Ryu, In-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.272-277
    • /
    • 2014
  • At present, the index of chemical oxygen demand (COD) is widely used as an indicator of organic water pollution with biochemical oxygen demand (BOD). But, traditional COD measurement method are not only with various chemical reagents exhausted, but also long time consumed, the operation procedure and the modification are much professional. This paper reported a novel COD measurement system using double-beam and multiple wavelength analysis UV-VIS spectrometries. It consists of pulsed xenon lamp, two-way optical fiber, optical switch, spectrometer and main processor. Proposed COD measurement system obtains any spectral information of water sample (KHP standard sample and two river water and wastewater) and reference sample (distilled water) in the range of 200~520 nm, corresponding to the COD concentration from 0 to 300 mg/L through calculating the UV absorbance. The system show improved precision and can work continuously fast at time interval about 25 seconds.

Characteristics of Total Organic Carbon and Chemical Oxygen Demand in the Coastal Waters of Korea (한국 연안수에서 총유기탄소 및 화학적 산소요구량 분포 특성)

  • 손주원;박용철;이효진
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.317-326
    • /
    • 2003
  • In order to improve our knowledge of the characteristics of organic compounds in coastal waters, water samples were collected from the Incheon coastal region, the Hyungsan River in Youngil Bay and the Busan coastal region. Also, mooring was carried out near the Kanghwa Island and Seo Island. In this study, the relationship between the total organic carbon (TOC) and salinity, chemical oxygen demand (COD) and salinity were evaluated and determined. Riverine end-member of TOC into the Korean coastal area and its COD estimated from these relationships were 5.32 mg C/l and 8.87 mg O$_2$/l, respectively. The oxidation efficiency of COD to TOC estimated using the high-temperature catalytic oxidation method was about 47%. The linear relationship between TOC and COD was derived as COD (mg O$_2$/l)=0.61${\times}$TOC (mg C/l) -0.03, (R$^2$=0.66). Therefore, it is possible to estimate total organic carbon using this equation from previously reported chemical oxygen demand.

Development of a COD(Chemical Oxygen Demand) Sensor Using an Electrode-surface Grinding Unit (전극표면 연마 유니트를 이용한 전기화학적 COD측정용 센서의 개발)

  • Yoon, Seok-Min;Choi, Chang-Ho;Park, Byung-Sun;Jin, Gil-Joo;Jeong, Bong-Geun;Hyun, Moon-Sik;Park, Jong-Man;Lee, Seung-Sun;Yi, Dong-Heui;Kim, Hyung-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.453-458
    • /
    • 2006
  • An electrochemical COD(Chemical Oxygen Demand) sensor using an electrode-surface finding unit has been constructed. The electrolyzing(oxidizing) action of copper on the organic species was used as the basis of the COD measuring sensor. Using a simple three electrode cell, organic species which has been activated by the catalytic action of copper is oxidized at a working electrode, poised at a positive potential. A novel modification of the above method allowed for extended use of the electrode, in which the action of the electrode is regenerated by an electrode-surface grinding unit. When samples obtained from a wastewater treatment factory were measured, a linear correlation($r^2=0.93$) between the measured value(EOD) and $COD_{Mn}$ of the samples was observed. Overall results indicated that the electrochemical sensor with grinding unit could be applied for continuous measurements of COD in practical fields.

A Study on the Appropriateness as Organic Matters Indicator and the Distribution of Chemical Oxygen Demand and Total Organic Carbon in Masan Bay, Korea (마산만 해수 중 화학적산소요구량과 총유기탄소 분포 특성 및 유기물 지표로서의 적절성 검토)

  • PARK, MI-OK;LEE, YONG-WOO;CHO, SEONG-AH;KIM, HYE-MI;PARK, JUN-KUN;KIM, SUNG-GIL;KIM, SEONG-SOO;LEE, SUK MO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.82-95
    • /
    • 2021
  • We investigated the temporal and spatial distribution characteristics of chemical oxygen demand (COD) and total organic carbon (TOC) in all 13 locations of Masan Bay from February to November in 2015. The COD and TOC contents were high during the June-August period when the pollution load increased. In particular, the concentrations of COD and TOC were about twice as high in the surface water as in the bottom water. In spatial distribution, the COD and TOC concentrations at the inner bay were about twice as high as those of the outer bay in Masan Bay. As a result of estimating the oxidation efficiency of COD from the surface layer of Masan Bay in 2015 based on the theoretical oxygen demand (TOD), it was at the level of about 23%. Due to the low oxidation efficiency of COD, there is a risk that the organic matter in Masan Bay will be somewhat underestimated. Therefore, for quantitative analysis of organic matter, COD and TOC analyses need to be combined.

Impact of Current Density, Operating Time and pH of Textile Wastewater Treatment by Electrocoagulation Process

  • Hossain, Md. Milon;Mahmud, Md. Iqbal;Parvez, Md. Shohan;Cho, Haeng Muk
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.157-161
    • /
    • 2013
  • Treatment of textile wastewater by the electrocoagulation (EC) process is being investigated by this experimental study. The objective of this experiment is to observe the efficiency of the EC process in removing chemical oxygen demand (COD) and turbidity. In this experiment an iron electrode is used in the EC process, and different working parameters such as pH, current density and operating time were studied in an attempt to achieve a higher removal capacity. The results show that the maximum COD removal occurred at neutral pH at operating time 30 min. COD and turbidity removal reaches at maximum, with optimum consumption of electrodes, between current density 85-95 $A/m^2$, and only trace amounts of metals were determined in the EC treated effluent.

Comparing geometric parameters of a hydrodynamic cavitation process treating pesticide effluent

  • Randhavane, Shrikant B.
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.318-323
    • /
    • 2019
  • Paper focuses on comparison between two different orifice plate configurations (plate number 1 and plate number 2) used as cavitating device in the hydrodynamic cavitation reactor for improving pollutant removal efficiencies. Effect of four different parameters such as hydraulic characteristics (in terms of range of flow rates, orifice velocities, cavitation number at different inlet pressures); cavitation number (in range of 5.76-0.35 for plate number 1 and 1.20-0.35 for plate number 2); inlet pressure (2-8 bars) and reaction time (0 to 60 min) in terms of chemical oxygen demand (COD) removal and chlorpyrifos degradation has been studied and compared. Optimum inlet pressure of 5 bars exists for degradation of pollutants for both the plates. It is found that geometry of orifice plate plays important role in removal efficiencies of pollutant. Results obtained confirmed that orifice plate 1 with configuration of 1.5 mm 17 holes; cavitational number of 1.54 performed better with around 60% COD and 98% chlorpyrifos removal as compared to orifice plate 2 having configuration of 2 mm single hole; cavitational number of 0.53 with 40% COD and 96% chlorpyrifos in 2 h duration time.

Mathematical Model for a Three-Phase Fluidized Bed Biofilm Reactor in Wastewater Treatment

  • Choi, Jeong-Woo;Min, Ju-Hong;Lee, Won-Hong;Lee, Sang-Back
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.51-58
    • /
    • 1999
  • A mathematical model for a three phase fluidized bed bioreactor (TFBBR) was proposed to describe oxygen utilization rate, biomass concentration and the removal efficiency of Chemical Oxygen Demand (COD) in wastewater treatment. The model consisted of the biofilm model to describe the oxygen uptake rate and the hydraulic model to describe flow characteristics to cause the oxygen distribution in the reactor. The biofilm model represented the oxygen uptake rate by individual bioparticle and the hydrodynamics of fluids presented an axial dispersion flow with back mixing in the liquid phase and a plug flow in the gas phase. The difference of setting velocity along the column height due to the distributions of size and number of bioparticle was considered. The proposed model was able to predict the biomass concentration and the dissolved oxygen concentration along the column height. The removal efficiency of COD was calculated based on the oxygen consumption amounts that were obtained from the dissolved oxygen concentration. The predicted oxygen concentration by the proposed model agreed reasonably well with experimental measurement in a TFBBR. The effects of various operating parameters on the oxygen concentration were simulated based on the proposed model. The media size and media density affected the performance of a TFBBR. The dissolved oxygen concentration was significantly affected by the superficial liquid velocity but the removal efficiency of COD was significantly affected by the superficial gas velocity.

  • PDF

Treatment of Domestic Wastewater by the Application of Electrochemical Membrane Bioreactor and Generation of Bioelectricity

  • Yadav, Saurabh;Kamsonlian, Suantak;Pal, Shubham
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.532-537
    • /
    • 2022
  • The need for obtaining treated wastewater that meets high quality standards for discharge or reuse necessitates the use of highly efficient wastewater treatment techniques. In the present study, experiments have been carried out to reduce the concentration level of biological oxygen demand (BOD), chemical oxygen demand (COD), and total dissolved solids (TDS) from the wastewater sample. Treatment of sample of a real municipal wastewater collected from a sewage treatment plant (STP) was carried out in an electrochemical membrane bioreactor (EMBR). The EMBR was operated continuously for five days, and readings were taken at regular intervals. This paper has experimental results conducted in EMBR that indicate reduction of BOD, COD, and TDS levels of up to 32.25%, 29.25%, and 31.93%, respectively. Further, it was observed that a current of magnitude of 0.00752 mA was generated due to the metabolic activities of bacteria present in municipal wastewater, which gradually decreased day by day due to the decay of bacteria.