DOI QR코드

DOI QR Code

A Study on the Appropriateness as Organic Matters Indicator and the Distribution of Chemical Oxygen Demand and Total Organic Carbon in Masan Bay, Korea

마산만 해수 중 화학적산소요구량과 총유기탄소 분포 특성 및 유기물 지표로서의 적절성 검토

  • PARK, MI-OK (Marine Environment Monitoring Team, Korea Marine Environment Management Corporation) ;
  • LEE, YONG-WOO (Education Planning Team, Korea Marine Environment Management Corporation) ;
  • CHO, SEONG-AH (Marine Environment Monitoring Team, Korea Marine Environment Management Corporation) ;
  • KIM, HYE-MI (Marine Environment Monitoring Team, Korea Marine Environment Management Corporation) ;
  • PARK, JUN-KUN (Marine Environment Monitoring Team, Korea Marine Environment Management Corporation) ;
  • KIM, SUNG-GIL (Marine Environment Monitoring Team, Korea Marine Environment Management Corporation) ;
  • KIM, SEONG-SOO (Marine Environment Research Institute, Korea Marine Environment Management Corporation) ;
  • LEE, SUK MO (Department of Ecological Engineering, Pukyoung National University)
  • 박미옥 (해양환경공단 해양수질팀) ;
  • 이용우 (해양환경공단 교육개발팀) ;
  • 조성아 (해양환경공단 해양수질팀) ;
  • 김혜미 (해양환경공단 해양수질팀) ;
  • 박준건 (해양환경공단 해양수질팀) ;
  • 김성길 (해양환경공단 해양수질팀) ;
  • 김성수 (해양환경공단 해양환경조사연구원) ;
  • 이석모 (부경대학교 생태공학과)
  • Received : 2020.10.07
  • Accepted : 2021.03.16
  • Published : 2021.05.31

Abstract

We investigated the temporal and spatial distribution characteristics of chemical oxygen demand (COD) and total organic carbon (TOC) in all 13 locations of Masan Bay from February to November in 2015. The COD and TOC contents were high during the June-August period when the pollution load increased. In particular, the concentrations of COD and TOC were about twice as high in the surface water as in the bottom water. In spatial distribution, the COD and TOC concentrations at the inner bay were about twice as high as those of the outer bay in Masan Bay. As a result of estimating the oxidation efficiency of COD from the surface layer of Masan Bay in 2015 based on the theoretical oxygen demand (TOD), it was at the level of about 23%. Due to the low oxidation efficiency of COD, there is a risk that the organic matter in Masan Bay will be somewhat underestimated. Therefore, for quantitative analysis of organic matter, COD and TOC analyses need to be combined.

마산만에서 유기물의 시공간적 분포 특성을 살펴보기 위해 2015년 월별로 총 13개 정점에서 화학적산소요구량(COD)과 총유기탄소(TOC) 농도를 조사하였다. COD와 TOC 농도는 오염부하량이 증가하는 6~8월에 상대적으로 높았고, 저층보다 표층에서 약 2배 높았다. COD와 TOC 농도는 마산만의 내측 정점에서 다른 정점들에 비해 약 2배 이상 높았다. 2015년 마산만 표층에서 이론적산소 요구량(TOD)을 기준으로 COD의 산화 효율성을 추정한 결과, COD의 산화 효율은 약 23%로 낮은 수준이었다. 마산만에서 COD 측정시 낮은 산화 효율은 만 내에 분포하는 유기물 양이 과소평가 될 가능성이 있어, 유기물의 정확한 정량분석을 위해서는 COD와 TOC 분석의 병행 조사가 필요할 것으로 판단된다.

Keywords

Acknowledgement

이 연구는 해양환경측정망 운영 사업의 연구비 지원으로 수행되었습니다. 현장조사 및 분석에 도움을 주신 해양환경공단의 해양수질팀원들께 감사드립니다. 또한 논문을 세심하게 심사해 주신 두 분의 심사위원과 편집위원께 감사드립니다.

References

  1. Bates, N.R. and D.A. Hansell, 1999. A high resolution study of surface layer hydrographic and biogeochemical properties between Chesapeake Bay and Bermuda. Mar. Chem., 67: 1-16. https://doi.org/10.1016/S0304-4203(99)00045-6
  2. Broecker, W.S., 1974. Internal cycling and throughput. Chemical Oceanography, New York, Harcourt Brace Jovanovich, 7-8.
  3. Chang, W.K., J. Ryu, Y. Yi, W.C. Lee, C.W. Lee, D. Kang, C.H. Lee, S. Hong, J. Nam and J.S. Khim, 2012. Improved water quality in response to pollution control measures at Masan Bay, Korea. Mar. Pollut. Bull., 64(2): 427-435. https://doi.org/10.1016/j.marpolbul.2011.11.011
  4. Cho, K.J., M.Y. Choi, S.K. Kwak, S.H. Im, D.Y. Kim, J.G. Park and Y.E. Kim, 1998. Eutrophication and seasonal variation of water quality in Masan-Jinhae Bay. J. Korean Soc. Oceanogr., 3(4): 193-202.
  5. Cho, H.Y. and K.H. Lee, 2012. Development of an air-water temperature relationship model to predict climate-induced future water temperatures in estuaries. J. Environ. Eng., 138: 570-577. https://doi.org/10.1061/(asce)ee.1943-7870.0000499
  6. Choi, J.Y. and D.H. Han, 2006. Improvement of measuring organic matters in water quality standards, J. Korean Soc. Environ. Eng., 28(8): 807-812.
  7. Diaz, R.J. and R. Rosenberg, 2008. Spreading dead zones and consequences for marine ecosystems. Sci., 321(5891): 926-929. https://doi.org/10.1126/science.1156401
  8. Eom, K.H., G.Y. Kim, W.C. Lee and D.I. Lee, 2012. Effective coastal environmental management by conjugation of modeling of bio-purification and total allowable pollutant loads in Masan Bay, J. Korean Soc. Mar. Environ. Saf., 15(1), 38-46. https://doi.org/10.7846/JKOSMEE.2012.15.1.038
  9. Glibert, P.M., S. Seitzinger, C.A. Heil, J.M. Burkholder, M.W. Parrow, L.A. Codispoti and V. Kelly, 2005. The role of eutrophication in the global proliferation of harmful algal blooms, Oceanogr., 18(2): 198-209. https://doi.org/10.5670/oceanog.2005.54
  10. Hayase, K. and N. Shinozuka, 1995. Vertical distribution of fluorescent organic matter along with AOU and nutrients in the equatorial central Pacific. Mar. Chem., 48: 283-290. https://doi.org/10.1016/0304-4203(94)00051-E
  11. Hur, J., J.K. Shin and S.W. Park, 2006. Characterizing fluorescence properties of dissolved organic matter for water quality management of rivers and lakes. J. Korean Soc. Environ. Engin., 28(9): 940-948.
  12. Jung, H.J., B.M. Lee, K.H. Lee, H.S. Shin and J. Hur, 2016. Influences of environmental conditions and refractory organic matters on organic carbon oxidation rates measured by a high temperature combustion and a UV-sulfate methods. J. Korean Soc. Water Environ., 32(1): 98-107. https://doi.org/10.15681/KSWE.2016.32.1.98
  13. Kim, T.H. and G.B. Kim, 2010. Distribution of dissolved organic carbon (DOC) in the southwestern East Sea in summer. Ocean and Polar Res., 32(3): 291-297. https://doi.org/10.4217/OPR.2010.32.3.291
  14. Korea Hydrographic and Oceanographic Agency (KHOA), 2016. Annual report of Korean oceanographic observation network.
  15. Kwon, K.Y., C.H. Moon and C.K. Kang, 2002. Distribution of particulate organic matters along the salinity gradients in the Seomjin River Estuary. J. Korean Fish. Soc., 35(1): 86-96.
  16. Lee, H.S. and J.H.W. Lee, 1995. Continuous monitoring of short term dissolved oxygen and algal dynamics, Water Res., 29(12): 2789-2796. https://doi.org/10.1016/0043-1354(95)00126-6
  17. Lee, C., S. Wakeham and C. Arnosti, 2004. Particulate organic matter in the sea: The composition conundrum. Ambio, 33(8): 565-575. https://doi.org/10.1579/0044-7447-33.8.565
  18. Libes, S.M., 2009. Organic matter: Production and destruction, Introduction to marine biogeochemistry (second edition). Academic Press, 207-219.
  19. Lim, D.I., Y.O. Kim, M.R. Kang, P.K. Jang, K.S. Shin and M. Jang, 2007. Variability of water quality and limiting factor for primary production in semi-enclosed Masan Bay, South Sea of Korea. Ocean and Polar Res., 29(4): 349-366. https://doi.org/10.4217/OPR.2007.29.4.349
  20. Ministry of Oceans and Fisheries (MOF), 2018a. Standard methods of marine environment in Korea.
  21. Ministry of Oceans and Fisheries (MOF), 2018b. 2018 Masan Bay special management area total pollution load management system implementation research.
  22. Ogura, N., 1975. Further studies on decomposition of dissolved organic matter in coastal seawater. Mar. Biol., 31: 101-111. https://doi.org/10.1007/BF00391622
  23. Park, J.K., E.S. Kim, K.T. Kim, S.R. Cho, T.Y. Song, J.K. Yoo, S.S. Kim and Y.C. Park, 2009. Characteristics in organic carbon distribution in the Seamangeum area during the construction of artificial sea dike, Korea. J. Korean Soc. Mar. Environ. Engin., 12(2): 75-83.
  24. Park, M.O., Y.W. Lee, J.K. Park, S.G. Kim, S.S. Kim and S.M. Lee, 2018. Changes in water quality in Masan Bay after the introduction of the total pollution load management system. J. Korean Soc. Mar. Environ. Energy, 21(2): 139-148. https://doi.org/10.7846/JKOSMEE.2018.21.2.139
  25. Price, K.S., G.T. Waggy and R. Conway, 1974. Brine shrimp bioassay and seawater BOD of petrochemicals. J. Water. Poll. Control. Fed., 46: 63-77.
  26. Rabalais, N.N., R.E. Turner, R.J. Diaz and D. Justic, 2009. Global change and eutrophication of coastal waters, ICES J. Mar. Sci., 66(7): 1528-1537. https://doi.org/10.1093/icesjms/fsp047
  27. Rueler, J.G. and D.R. Ades, 1987. The role of iron nutrition in photosynthesis and nitrogen assimilation in Scenedesmus quadricauda (Chlorophyceae). J. Phycol., 23(3): 452-457. https://doi.org/10.1111/j.1529-8817.1987.tb02531.x
  28. Sharp, J.H., 1973. Size classes of organic carbon in seawater. Limnol. Oceanogr., 18(3): 441-447. https://doi.org/10.4319/lo.1973.18.3.0441
  29. Soetaert, K., J.J. Middelburg, C. Heip, P. Meire, S. Van Damme and T. Maris, 2006. Long-term change in dissolved inorganic nutrients in the heterotrophic Scheldt estuary (Belgium, The Netherlands). Limnol. Oceanogr., 51: 409-423. https://doi.org/10.4319/lo.2006.51.1_part_2.0409
  30. Son, J.W., Y.C. Park and H.J. Lee, 2003. Characteristics of total organic carbon and chemical oxygen demand in the coastal waters of Korea. J. Korean Soc. Oceanogr., 8(3): 317-326.
  31. Tishchenko, P., P. Tishchenko, V. Lobanov, A. Sergeev, P. Semkin and V. Zvalinsky, 2016. Summertime in situ monitoring of oxygen depletion in Amursky Bay (Japan/East Sea), Cont. Shelf Res., 118: 77-87. https://doi.org/10.1016/j.csr.2016.02.014
  32. Tyson, R.V. and T.H. Perason, 1991. Modern and ancient continental shelf anoxia: an overview. Geol. Soc. Spec. Publ., 58(1): 1-24. https://doi.org/10.1144/GSL.SP.1991.058.01.01
  33. Yoo, Y.J. and S.J. Kim, 2019. Analysis of the characteristics of water quality difference occurring between high tide and low tide in Masan Bay. J. Wet. Res., 21(2): 102-113. https://doi.org/10.17663/JWR.2019.21.2.102
  34. Yuya, D., K. Tomohiro, N. Megumi, O. Sukeo and N. Hiroaki, 2012. Comparative study of chemical oxygen demand and total organic carbon in Omura Bay. Nagasaki Int'l. Univ. review, 12: 157-162.