• Title/Summary/Keyword: COD/N ratio

Search Result 240, Processing Time 0.022 seconds

Extraction of organic carbon from the condensate of food waste dry feed process (음식물류폐기물의 건식사료화 공정에서 발생되는 응축수로부터 유기탄소 추출)

  • Kim, Min-Kyung;Kwon, Ki-Wook;Mo, Kyung;Cui, Feng-Hao;Park, Se-Yong;Kim, Moon-Il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.2
    • /
    • pp.41-48
    • /
    • 2020
  • In this study, organic carbon was extracted from the condensed water of food waste drying process to estimate the applicability as external organic carbon sources. The COD, TN, TP and TS of condensed water were 21,374 mg/L, 148 mg/L, 4.19 mg/L, and 455.7 mg/L, respectively. In addition, the content of biodegradable organics in condensed water was 47%. The fractional distillation and the vacuum evaporation were employed for extracting organic carbon. There were 8 extraction conditions, but 4 conditions were available for extraction. They were 1) 0mmHg, 110℃ 2) -600mmHg, 70℃ 3) -500mmHg, 80℃ 4) -600mmHg, 80℃. All 4 conditions showed the highest organic concentration and the highest quantity of organics when extracted 10% of initial volume. It was estimated that optimum conditions were 80℃, -600mmHg and 10% extraction. Then, extraction concentration, extraction quantity, extraction efficiency, extraction time, BOD/TCOD ratio, TVFAs/TCOD ratio and NH3-N were 174,200 mg/L, 8,710 mg, 46%, 10 min, 0.97, 0.74 and 75.5 mg/L respectively. Therefore, the extracted organic carbon can be utilized as external organic carbon sources.

The Runoff Characteristics of Non-point Pollution Sources in Industrial Complex(II): Focusing on the Outflow Characteristics of the C Industrial Complex by Rainfall Event (산업단지 비점오염원의 유출특성(II): C산업단지의 강우사상별 유출특성을 중심으로)

  • Woo, Jae-Suk;Shin, Hyun-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.1
    • /
    • pp.41-47
    • /
    • 2022
  • In this study, rainfall water outlet water quality monitoring was performed on the C industrial complex to evaluate the characteristics of non-point pollutant runoff from the industrial complex during rainfall and to use it as basic data for calculating the load and unit of non-point pollutant. As a result of calculating EMC according to the outflow amount by rainfall event, the 1st rainfall showed EMCs ranges of BOD, CODMn, SS, T-N, and T-P of 1.32~48.76, 3.32~43.75, 2.89~199.43, 2.76~8.93, 0.08~068, and the 2nd rainfall was 0.5~2.9, 2.71~7.13, 2.82~174.94, 1.33~4.03, 0.01~1.28 mg/L, respectively. As a result of calculating the ratio of cumulative outflow and cumulative pollution load, most of the pollution load was less than the rainfall outflow, but over time, the initial washing phenomenon occurred as the ratio of cumulative rainfall outflow and cumulative pollution load increased to more than 1.

Operation of Advanced Water Treatment Processes for Downstream River Source Water (상수원수의 고도정수처리 공정 파일롯 운전 연구)

  • Wang, Chang-Keun;Oh, Sang-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Down Stream K River has high COD (4-10 mg/L) and high $NH_3$-N concentration (3.5 mg/L during winter period). Although $NH_3$-N itself is not reported harmful at this level, it must be removed to meet drinking water standard (0.5 mg/L). We constructed a pilot plant modifying the processes of conventional drinking water facilities. Prechlorination and powdered activated carbon (PAC) dechlorination was adopted prior to a flocculation tank to remove ammonia and prevent disinfection byproducts (DBPs) formation. Also, GAC processes was included after sand filter to remove residual DOC. This pilot having a capacity of 36 ton/day was operated for one year. The GAC processes were successful to remove ammonia and many organic pollutants (DOC, MBAS, UV-254 nm absorbance, etc). Influent DOC concentrations were very high as 3~6 mg/L throughout the plant operation. It was impossible to achieve 1.0 mg/L effluent DOC, indicating that bed depth (2 m) should be increased to achieve more strict DOC quality standards. When $Cl_2$ dose was well controlled ($Cl_2/NH_3$-N ratio 10~11 on a weight basis), $NH_3$-N removal was 98% and THMs was very low possibly due to low free residual chlorine and PAC dechlorination.

Analysis of NPS Pollution Loads over Rainfall-Runoff Events from the Silica Mine Site (규사광산 지역의 강우시 비점오염원의 유출분석)

  • Choi, Yong-hun;Won, Chul-hee;Seo, Ji-yeon;Shin, Min-Hwan;Yang, Hee-Jeong;Choi, Joong-dae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.413-419
    • /
    • 2010
  • A silica mine monitoring was conducted from March to December in 2008 to measure rainfall, runoff amounts and pollution loads. A total of 13 rainfall-runoff events were measured and analyzed with respect to runoff ratio, pollutant concentration and load, and initial flush. Over rainfall-runoff events, 95% confidence range of SS concentration was 942.5~2,056.2 mg/L. Other measured water quality indices also showed relatively large variation. This wide concentration variation was thought to be caused by the bare working ground of the mine that was used to store, process and transport the mined silica. Total pollution load of the 13 rainfall-runoff events was SS 17,901 kg/ha, $COD_{Cr}$ 160.9 kg/ha, $COD_{Mn}$ 111.24 kg/ha, BOD 79.6 kg/ha, T-N 13.8 kg/ha, T-P 3.5 kg/ha, and TOC 39.3 kg/ha. Initial flush was not well observed except SS. Very high SS concentration and load was occurred when rainfall was large. Therefore, it was recommended to manage the bare ground not to discharge excessive pollutants during wet days by covering the ground or constructing runoff treatment systems such as a sediment basin.

Study on Autotrophic Denitrification by the Injection of Spent Sulfidic Caustic in a Hybrid Bardenpho Process (Hybrid Bardenpho 공정에서 Spent Sulfidic Caustic의 주입을 통한 독립영양 탈질에 관한 연구)

  • Lee, Jae-Ho;Park, So-Ra;Park, Jeung-Jin;Byun, Im-Gyu;Park, Tae-Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.563-568
    • /
    • 2008
  • In petroleum refining industry, caustic (NaOH) solution is used to remove $H_2S$ from hydrocarbon streams in naphtha cracking process. Once $H_2S$ is absorbed in caustic solution, the solution becomes known as spent sulfidic caustic (SSC), which contains high concentrations of hydrogen sulfide and alkalinity. This study was focused on the evaluation of autotrophic denitrification by SSC in a hybrid Bardenpho process. SSC was injected to the anoxic (1) and anoxic (2) tank at different S/N ratio. In a previous lab-scale study, as we operated a modified Ludzack-Ettinger process, it was observed that the COD increment of effluent and nitrification failure happened because of non-biodegradable matters in SSC and high pH, respectively. Thus cilia media was packed at 2.4%(v/v) in all aerobic tanks and the pH of SSC was neutralized from 13.3 to 11.5 with addition of sulphuric acid ($H_2SO_4$). Consequently, these strategies were successful because no COD increment of effluent was observed and nitrification failure did not happen. The maximum TN removal efficiency was 77.5% when SSC was injected to both the anoxic (1) and anoxic (2) tanks. The mean TN concentration of effluent in this condition was 5.8 mg/L.

Applicability of the SBR Process Using Aerobic Granular Sludge (AGS) in Municipal Wastewater Treatment (호기성 그래뉼 슬러지를 이용한 연속 회분식 공정의 도시하수처리에 대한 적용)

  • Yae, Jae-Bin;Ryu, Jae-Hoon;Hong, Seong-Wan;Kim, Hyun-Gu;Ahn, Dae-Hee
    • Journal of Environmental Science International
    • /
    • v.27 no.4
    • /
    • pp.233-240
    • /
    • 2018
  • The purpose of this study was to confirm the applicability of aerobic granular sludge (AGS) in the advanced sewage treatment process. Simulated influent was used in the operation of a laboratory scale reactor. The operation time of one cycle was 4 h and the reactor was operated for six cycles per day. The volume exchange ratio was 50%. The influent was injected in divisions of 25% to increase the removal efficiency of nitrogen in every cycle. As a result, the removal efficiencies of $COD_{Cr}$ and TN in this reactor were 98.2% and 76.7% respectively. During the operation period, the AGS/MLVSS concentration ratio increased from 70.0% to 86.7%, and the average $SVI_{30}$ was 67 mL/g. The SNR and SDNR were 0.073-0.161 kg $NH_4{^+}$-N/kg MLVSS/day and 0.071-0.196 kg $NO_3{^-}$-N/kg MLVSS/day respectively. These values were higher or similar to those reported in other studies. The operation time of the process using AGS is shorter than that of the conventional activated sludge process. Hence, this process can replace the activated sludge process.

Anaerobic Ammonium Oxidation(ANAMMOX) in a Granular Sludge Reactor and its Bio-molecular Characterization (입상 슬러지 반응조 내의 혐기성 암모늄 산화(ANAMMOX) 및 분자생태학적 특성 평가)

  • Han, Ji-Sun;Park, Hyun-A;Sung, Eun-Hae;Kim, Chang-Gyun;Yoon, Cho-Hee;Bae, Young-Shin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1213-1221
    • /
    • 2006
  • In this study, granular sludge used in an anaerobic process treating brewery waste was inoculated in a laboratory scale of reactor to induce anaerobic ammonium oxidation(ANAMMOX). The reactor was operated with synthetic wastewater, which prepared at 1:1 ratio of $NH_4^+-N$ over $NO_2^--N$. Changes in nitrogen concentration, COD, alkalinity and gas production were analyzed. There are 3 phases of spanning in experimental period according to influent nitrogen concentration. In the Phase 1, each of the concentration of $NH_4^+-N$ and $NO_2^--N$ were increased from 1.91 $gN/m^3{\cdot}d$ to 14.29 $gN/m^3{\cdot}d$. Ammonium nitrogen loading(same as nitrite nitrogen) was 23.81 $gN/m^3{\cdot}d$ in the Phase 2 and 19.05 $gN/m^3{\cdot}d$ in the Phase 3, respectively $NO_2^--N$ has been removed up to 99% during whole period while the removal efficiency of $NH_4^+-N$ was significantly varied. In Phase 2, $NH_4^+-N$ was removed up to 75%. Microorganisms varied temporally through three phases were characterized by 16s rDNA analysis methods. ANAMMOX bacteria were dominantly found in phase 2 when the removal rate of $NO_2^--N$and $NH_4^+-N$ was the highest up to 99% and 75%, respectively. Due to erroneous exposed to air, the removal efficiency of $NH_4^+-N$ was unexpectedly lowered, but ANAMMOX bacteria still existed.

Simultaneous Carbon and Nitrogen Removal Using an Integrated System of High-Rate Anaerobic Reactor and Aerobic Biofilter (고효율 혐기성반응조 및 호기성여상 조합시스템에 의한 질소·유기물 동시 제거)

  • Sung, Moon Sung;Chang, Duk;Seo, Seong Cheol;Chung, Bo Rim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.55-65
    • /
    • 1999
  • AF(anaerobic filter)/BAF(biological aerated filter) system and UASB(upflow anaerobic sludge blanket)/BAF system, of which system effluents were recirculated to the anaerobic reactors in each system, were operated in order to investigate the performance in simultaneous removal of organics and nitrogen in high-strength dairy wastewater. Advanced anaerobic treatment processes of AF and UASB were evaluated on applicability as pre-denitrification reactors, and BAF was also evaluated on the performance in oxidizing the remaining organics and ammonia nitrogen. At system HRTs of 4.0 to 4.5 days and recirculation ratios of one to three, the AF/BAF system could achieve more than 99% of organics removals and 64 to 78% of total nitrogen removals depending upon the recirculation ratio. Although the UASB/BAF system also showed more than 99% of organics removals, total nitrogen removals in the UASB/BAF system were 53 to 66% which are lower than those in the AF/BAF system at the corresponding recirculation ratios. Optimum recirculation ratios considering simultaneous removal of organics and nitrogen and cost-effectiveness, were in the range of two to three. The upflow AF packed with crossflow module media, as a primary treatment of the anaerobic reactor/BAF system, showed better performances in denitrification, SS removals, and gas production than the UASB. Higher loading rate of suspended solids from the UASB increased the backwashing times in the following BAF. Especially, at a recirculation ratio of three in the UASB/BAF system, the increase in head loss due to clogging in the BAF caused frequent backwashing, at least once d day. The BAF showed the high nitrification efficiency of average 99.2% and organics removals more than 90% at organics loading rate less than $1.4KgCOD/m^3/d$ and $COD/NH_3-N$ ratio less than 6.4. It was proved that the simplified anaerobic reactor/BAF system could maximize the organics removal and achieve high nitrogen removal efficiencies through recirculation of system effluents to the anaerobic reactor. The AF/BAF system can, especially, be a cost effective and competitive alternative for the simultaneous removal of organics ana nitrogen from wastewaters.

  • PDF

Advanced Wastewater Treatment Process Using Aerobic Granular Sludge (AGS-SBR) (호기성 그래뉼 슬러지를 이용한 하수고도처리기술(AGS-SBR))

  • Choi, Han Na;Mo, Woo Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.1
    • /
    • pp.47-54
    • /
    • 2021
  • Aerobic granular sludge (AGS) can be classified as a type of self-immobilized microbial aggregates measuring more than 0.2 mm. It offers the option to simultaneously remove COD, N, and P that occur in different zones inside a granule. Also, AGS is characterized by high precipitability, treatability with high organic loading, and high tolerance to low temperature. In this study, a sequencing batch reactor inoculated with AGS (AGS-SBR) is a new advanced wastewater treatment process that was proven to grow AGS with integrated nutrient removal and low C/N ratio. A pilot plant, AGS-SBR with a capacity of 225 ㎥/d was installed at an S sewage treatment plant in Gyeonggi-do. The results of the operation showed that the water quality of the effluent indicated that the value of BOD5 was 1.5 mg/L, CODMn was 11.4 mg/L, SS was 6.2 mg/L, T-N was 13.2 mg/L, and T-P was 0.197 mg/L, and all of these values reliably satisfied an effluent standard (I Area). In winter, the T-N treatment efficiency at a lower temperature of less than 11℃ also showed reliability to meet the effluent standard of the I Area (20 mg/L or less). Analysis of microbial community in AGS showed a higher preponderance of beneficial microorganisms involved in denitrification and phosphorus accumulation compared with activated sludge. The power consumption and sludge disposal cost were reduced by 34.7% and 54.9%, respectively, compared to the domestic SBR type sewage treatment plant with a processing capacity of 1,000 ㎥/d or less.

The Geochemical Characteristics and Environmental Factors on the Marine Shellfish Farm in Namhae-po Tidal Flat of Taean (태안 남해포 갯벌 패류양식해역의 환경특성)

  • Choi, Yoon Seok;Park, Kwang Jae;Yoon, Sang Pil;Chung, Sang Ok;An, Kyoung Ho;Song, Jae Hee
    • The Korean Journal of Malacology
    • /
    • v.29 no.1
    • /
    • pp.51-63
    • /
    • 2013
  • To assess the effect of environmental factors on the sustainability of cultured production shellfish, we investigated the habitat characteristics of tidal flat (Namhae-po in Taean). We measured the physiochemical parameters (temperature, salanity, pH, dissolved oxygen and nutrients) and the geochemical characteristics (chemical oxygen demand, ignition loss, C/N ratio and C/S ratio). Surface sediments were collected from several site of tidal flat to examine the geochemical characteristics of both the benthic environment and heavy metal pollution. The grain size for research area of tidal flat were similar at the ratio of silt and clay in comparison with the other site of it. The C/N ratio was more than 5.0, reflecting the range arising from the mix of marine organism and organic matter. The C/S ratio (about 2.8) showed that survey area had anoxic or sub-anoxic bottom conditions. The enrichment factor (Ef) and index of accumulation rate (Igeo) of the metals showed that those research areas can be classified as heavily polluted, heavily to moderately polluted, or more or less unpolluted, respectively. Adult surf clam (Mactra veneriformis) density was highest at St. 2 (middle part of the Namhae-po), on the other hand, surf clam spat density was highest at St. 3 (lower part of the Namhae-po). Heavy rain, terrigenous suspended clay with fresh water from neighboring agricultural land, and severe high air temperature during summer could be thought as detrimental causes of spat and adult mortality in Namhae-po tidal flat. We suggested that the growth of shellfish in the tidal flat was effected by the various environmental conditions, so an improvement in the cultured method was needed.