• Title/Summary/Keyword: CO2 배출량

Search Result 983, Processing Time 0.038 seconds

Development of a Simplified Model for Estimating CO2 Emissions: Focused on Asphalt Pavement (CO2 배출량 추정을 위한 간략 모델 개발: 아스팔트 포장을 중심으로)

  • Kim, Kyu-Yeon;Kim, Sung-Keun
    • Land and Housing Review
    • /
    • v.12 no.2
    • /
    • pp.109-120
    • /
    • 2021
  • Global warming due to increased carbon dioxide is perceived as one of the factors threatening the future. Efforts are being made to reduce carbon dioxide emissions in each industry around the world. In particular, environmental loads and impacts during the life cycle of SOC structures and buildings have been quantitatively assessed through a quantitative method called Life Cycle Assessment (LCA). However, the construction sector has gone through difficulty in quantitative assessment for several reasons: 1) LCI DB is not fully established; 2) the life cycle is very long; 3) the building structures are unique. Therefore, it takes enormous effort and time to carry out LCA. Rather than estimating carbon emissions with accuracy, this study aims to present a simplified estimation model that allows owners or designers to easily estimate carbon dioxide emissions with little effort, given that rapid and rough decisions regarding environmental load reduction are to be made. This study performs the LCA using data from 25 road construction projects across the country, followed by multiple regression analyses to derive a simplified carbon estimation model (SLCA). The study also carries out a comparative analysis with values estimated by performing a typical LCA. The comparison analysis shows an error rate of less than 5% for 16 road projects.

Study on Evaluation of Carbon Emission and Sequestration in Pear Orchard (배 재배지 단위의 탄소 배출량 및 흡수량 평가 연구)

  • Suh, Sanguk;Choi, Eunjung;Jeong, Hyuncheol;Lee, Jongsik;Kim, Gunyeob;Sho, Kyuho;Lee, Jaeseok
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.257-263
    • /
    • 2016
  • Objective of this study was to evaluate the carbon budget on 40 years old pear orchard at Naju. For carbon budget assessment, we measured the soil respiration, net ecosystem productivity of herbs, pear biomass and net ecosystem exchange. In 2015, pear orchard released about $25.6ton\;CO_2\;ha^{-1}$ by soil respiration. And $27.9ton\;CO_2\;ha^{-1}$ was sequestrated by biomass growth. Also about $12.6ton\;CO_2\;ha^{-1}$ was stored at pruning branches and about $5.2ton\;CO_2\;ha^{-1}$ for photosynthesis of herbs. As a result, 25.6 ton of $CO_2$ per ha is annually released to atmosphere. At the same time about 45.7 ton of $CO_2$ was sequestrated from atmosphere. When it sum up the amount of $CO_2$ release and sequestration, approximately $20.1ton\;CO_2\;ha^{-1}$ was sequestrated by pear orchard in 2015, and it showed no significant differences with net ecosystem exchanges ($17.8ton\;CO_2\;ha^{-1}\;yr^{-1}$) by eddy covariance method with the same period. Continuous research using various techniques will help the understanding of $CO_2$ dynamics in agroecosystem and it can be able to present a new methodology for assessment of carbon budget in woody crop field. Futhermore, it is expected that the this study can be used as the basic data to be recognized as a carbon sink.

Environmental and Economic Impact of EV and FCEV Penetration into the Automobile Industry: A CGE Approach (전기 및 수소차 보급 확산의 환경적·경제적 영향분석: 계산가능일반균형모형(CGE)의 적용)

  • Han, Taek-Whan;Lim, Dongsoon;Kim, Jintae
    • Environmental and Resource Economics Review
    • /
    • v.28 no.2
    • /
    • pp.231-276
    • /
    • 2019
  • This paper analyzed the impact of the penetration of EV(electric vehicle) and FCEV(fuel cell electric vehicle) into the automobile industry, using a static CGE approach. There are contrasting view on the economic impact of EV/FCEV penetration: negative economic impact due to shrunken intermediate inputs versus positive impact because of input saving technical progress. Regarding environment, there is no clear consensus whether EV or FCEV will contribute to the reduction of $CO_2$ emissions in Korea. This study attempts to provide an answer to these questions. By giving shocks to the input coefficients of automobile industries and automobile using sectors, as well as to the final demands for energies. we integrated the Bass diffusion model into the CGE framework, The result suggests that the EV penetration has adverse impact on the $CO_2$ emission while the FCEV penetration has positive impact. On the other hand, both EV and FCEV have positive impacts on GDP. When considering automobile manufacturing sectors only, adverse impacts on $CO_2$ are demonstrated both for EV and FCEV. However, since the size of $CO_2$ increase is small, these results does not alter the overall effects.

Static Chamber for Measurements Greenhouse Gas Emissions from Landfill Surface (Static Chamber를 이용한 도시쓰레기 매립지로부터의 온 실기체 배출량 측정)

  • 김득수;장영기;전의찬
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.277-279
    • /
    • 1999
  • 대기 중으로 배출되는 $CO_2$, CH$_4$, $N_2$O, $O_3$, CFC 등은 지구온난화에 기여하고, 이러한 온실기체들은 여러 경로를 통해서 대기로 배출되고 있다. 배출원별 온실기체의 기여도를 보면(Green peace, 1997) 화석연료 연소의 경우가 58%로 가장 높고, 농업과 토지이용의 변화에 의해 18%, 17%, 그리고 도시쓰레기의 매립에 의해서도 약 3%정도 기여하는 것으로 보고되었다. 주요 온실기체에 대한 대기 중 농도가 과거보다 현저하게 증가되었음이 확인되고 있고, $CO_2$의 경우 년간 증가율이 0.5%, CH$_4$의 경우는 1%, 그리고 $N_2$O의 경우는 약 0.2% 정도로 보고되고 있다.(Bouwman, 1990).(중략)

  • PDF

Estimation of Carbon Emission and Application of LCA (Life Cycle Assessment) from Barely (Hordeum vulgare L.) Production System (보리의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가 적용)

  • So, Kyu-Ho;Park, Jung-Ah;Lee, Gil-Zae;Ryu, Jong-Hee;Shim, Kyo-Moon;Roh, Kee-An
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.722-727
    • /
    • 2010
  • This study was conducted to estimate the carbon footprint and to establish the database of the LCI (Life Cycle Inventory) for barely cultivation system. Barley production system was separated into the naked barley, the hulled barley and the two-rowed barley according to type of barley species. Based on collecting the data for operating LCI, it was shown that input of fertilizer was the highest value of 9.52E-01 kg $kg^{-1}$ for two-rowed braley. For LCI analysis focussed on the greenhouse gas (GHG), it was observed that carbon footprint were 1.25E+00 kg $CO_2$-eq. $kg^{-1}$ naked braley, 1.09E+00 kg $CO_2$-eq. $kg^{-1}$ hulled braley and 1.71E+00 $CO_2$-eq. $kg^{-1}$ two-rowed barley; especially two-rowed barley cultivation system had highest emission value as 1.09E+00 kg $CO_2$ $kg^{-1}$ barley. It might be due to emit from mainly fertilizer production for barley cultivation. Also $N_2O$ was emitted at 7.55E-04 kg $N_2O\;kg^{-1}$ barley as highest value from hulled barley cultivation system because of high N fertilizer input. The result of life cycle impcat assessment (LCIA), it was observed that most of carbon emission from barely cultivation system was mainly attributed to fertilizer production and cropping unit. Characterization value of GWP was 1.25E+00 (naked barley), 1.09E+00 (hulled barley) and 1.71E+00 (two-rowed barely) kg $CO_2$-eq. $kg^{-1}$, respectively.

A Study on the Carbon Neutrality Scenario Model for Technology Application in Units of Space (공간 단위 탄소중립 기술적용 시나리오 모형(CATAS) 연구)

  • Park, Shinyoung;Choi, Yuyoung;Lee, Mina
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.63-69
    • /
    • 2023
  • 'Carbon-neutrality Assessment based on Technology Application Scenario (CATAS)' provides an analysis of greenhouse gas (GHG) reduction effectiveness when applying carbon-neutrality technology to areas such as energy conversion, transportation, and buildings at certain spatial levels. As for the development scope of the model, GHG emission sources were analyzed for direct GHG emissions, and the boundary between direct and indirect emissions are set according to the spatial scope. The technical scope included nine technologies and forest sinks in the transition sector that occupies the largest portion of GHG emissions in the 2050 carbon neutral scenario. The carbon neutrality rate evaluation methodology consists of four steps: ① analysis of GHG emissions, ② prediction of energy production according to technology introduction, ③ calculation of GHG reduction, and ④ calculation of carbon neutrality rate. After the web-based CATAS-BASIC was developed, an analysis was conducted by applying the new and renewable energy distribution goals presented in the 「2050 Greenhouse Gas Reduction Promotion Plan」 of the Seoul Metropolitan Government. As a result of applying solar power, hydrogen fuel cell, and hydrothermal, the introduction of technology reduced 0.43 million tCO2eq of 1.49 million tCO2eq, which is the amount of emissions from the conversion sector in Seoul, and the carbon neutrality rate in the conversion sector was analyzed to be 28.94 %.

Accounting for Early Action with Consideration of Energy Efficiency Improvements (에너지효율개선을 고려한 온실가스 감축 조기행동 인정방안)

  • Kim, Changseob
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.158-169
    • /
    • 2014
  • In the context of $CO_2$ mitigation, how early reduction action taken by individual companies previous to the actual regulated period is implemented at the free allocation process, remains one of the major issues. This article considered efficiency factor as a criterion for the early action. Then the emissions allowance allocated was compared and analyzed with and without the consideration of early action. In the cases of manufacturing sectors of Korea for the period 2001~2009, it is shown that emissions in the all industries fell by their efficiency factors. The amounts of emissions allowance allocated to the all industries except petro-chemistry are increased when EA is counted in the allocation process.

A Study on Process Integrated Innovation System for a LNG Industry (휘발성 유기화합물의 배출량 산정 및 관리 소프트웨어 개발)

  • Yi Jonghyeop;Park Hyeonsoo;Lee Sunwoo;Kim Hwayong
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.2 s.19
    • /
    • pp.7-13
    • /
    • 2003
  • Abstract This paper presents new emission mechanism and emission estimation model in volatile organic compounds(VOCs) emission sources. Also classifies applicable emission reduction techniques and presents new economical evaluation method for each techniques. We ultimately developed VEER(VOCs Emission Estimation and Reduction) software, which is backed by above mentioned model, emission source DB, Chemical properties DB, meteorological DB, and emission factor DB. With VEER, users in enterprise, central government and local self-governing body can get reliable emission results easily, and choose suitable emission reduction techniques.

  • PDF

Estimation and Feature of Greenhouse Gas Emission in Building Sector by National Energy Statistic (국가 에너지통계에 따른 건물부문 온실가스 배출량 추계 및 특성)

  • Jeong, Young-Sun;Kim, Tae-Hyoung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.187-195
    • /
    • 2019
  • In December 2015, The Paris Agreement was adopted to undertake ambitious efforts to combat climate change. Korean government announced its goal of reducing the country's greenhouse gas emissions by up to 37% below business as usual projections by 2030 in 2015. The purpose of this study was to set up the calculation methodology of GHG emission($CO_{2e}$) in building sector and to estimate the annual GHG emission in building sector based on national energy consumption statistic. The GHG emission from buildings is about 135.8 million ton $CO_{2e}$ as of 2015, taking up about 19.6% of Korea's entire emission and is about 144.7 million ton $CO_{2e}$ in 2017. The GHG emission of building sector is increasing at annual rate of 2.0% from 2001 to 2017. The GHG emission from electricity consumption in buildings is 91.8 million ton $CO_{2e}$ in 2017, is the highest $CO_2$ emission by energy source. The results show that the intensity of GHG emission of residential building sector is $40.6kg-CO_{2e}/m^2{\cdot}yr$ and that of commercial building sector is $68.4kg-CO_{2e}/m^2{\cdot}yr$.

Capacity and Value of Atmospheric Purification for Namsan Nature Park in Seoul (서울 남산 도시자연공원의 대기정화능과 가치)

  • 조현길;조용현;안태원
    • Korean Journal of Environment and Ecology
    • /
    • v.16 no.2
    • /
    • pp.172-178
    • /
    • 2002
  • This study quantified $CO_2$, SO$_2$and NO$_2$uptake by vegetation for the Namsan Nature Park in Seoul, and explored values for the park to contribute to atmospheric purification. Broad-leaved forest accounted for about 54% of total forest area, and tree-age structure was dominated by a young, growing tree population. Tree density and basal area averaged 17.5 trees/100$m^2$ and 2,580$\textrm{cm}^2$/100$m^2$, respectively. Atmospheric purification per unit area by forest type and age class was greater in older age classes, associated with changes in basal area, and tended to be greater in broad-leaved or mixed forest than in coniferous forest for the same age classes. Mean $CO_2$storage per unit area for all the forest types and age classes was 293.8 t/ha and economic value of the $CO_2$storage was ₩ 147millions/ha. Annual uptake averaged 24.6t/ha/yr for $CO_2$, 17.1 kg/ha/yr for SO$_2$and 43.9 kg/ha/yr for NO$_2$, and economic value of the annual uptake was ₩ 13millions/ha/yr. Total forest area stored 72,100 t of $CO_2$, and annually sequestered 6,040 t/yr of $CO_2$, 4,200 kg/yr of SO$_2$and 10,770 kg/yr of NO$_2$. Economic value of atmospheric purification for the entire area amounted to approximately ₩ 36,100millions for the $CO_2$storage, and ₩ 3,100millions/yr for the annual $CO_2$, SO$_2$ and NO$_2$uptake. The park played an important role through annually offsetting $CO_2$emissions from fossil fuel consumption by 1,100 persons, SO$_2$emissions by 2,800 persons, and NO$_2$ emissions by 1,160 persons. The results from this study are expected to be useful not merely in informing the public of atmospheric purification values of urban nature parks, but in urging the necessity for replanting and management budgets.