• Title/Summary/Keyword: CO gas sensing

Search Result 219, Processing Time 0.023 seconds

The Studies for the Malate Tissue Biosensor Using Malate Dehydrogenase(Decarboxylating) in the Bundle Sheath Cell of the Corn Leaf (옥수수잎의 유관속초세포내에 들어 있는 Malate Dehydrogenase(Decarboxylating)을 이용한 Malate 측정용 조직바이오센서에 관한 연구)

  • 김의락;노광수
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.319-324
    • /
    • 1994
  • A biosensor for the measurement of malate has been constructed by the sodium-alginate immobilized bundle sheath cell tissue of corn leaf containing malate dehydrogenase (decarboxylating) (EC 1. 1. 1. 40) on the CO2 gas-sensing electrode. The proposed tissue sensor had the linear in the range of malate concentration $5.5{\times}10^{-5}M∼2.5{\times}10^{-2}M$ with a slope of 53.5 mV/decade in 0.02M Tris-HCl buffer solution at optimum pH 8.0, and $25^{\circ}C$. A response time was 16∼18min. The present L-malate sensing tissue sensor is stable for more than one week. At pH 7.4, Km value was $0.6{\times}10^{-5}M$. The various kinds of salt did not effect the signal of malate tissue biosensor as the inhibitor. We can measure the malate by the CO2 electrode at the pH=8.0. Thus, the proposed tissue sensor will be useful for the measurement of malate.

  • PDF

Preparation of$SnO_2$-based gas sensor by Sol-Gel process

  • Bui, Anh-Hoa;Baek, Won-Woo;Lee, Sang-Tae;Jun, Hee-Kwon;Lee, Duk-Dong;Huh, Jeung-Soo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.135-135
    • /
    • 2003
  • This paper presents the preparation of SnO$_2$ films by Sol-Gel process and using spin coating method, and their sensing properties in CO gas. Experimental procedure consisted of following steps: (1) Tin chloride(SnCl$_4$) and Ammonium hydrogen carbonate (NH$_4$HCO$_3$) were used as precursors; (2) the Sol solution with concentration of about 10wt% SnO$_2$ was prepared from washed Gel-precipitate for spin coating step; (3) thereafter, the coating solution was dropped onto the alumina (Al$_2$O$_3$) substrate that was then spun, the spin coating was carried out with total 10 times; (4) finally, the films were calcined for 3 hours at 50$0^{\circ}C$ or higher temperature (600, 700, 800 or 90$0^{\circ}C$) in order to obtain various gram sizes. The average grain size was calculated by Scherrer's equation using main peaks in XRD spectra; meanwhile the thickness, microstructure and surface morphology of the films were observed by FE-SEM.

  • PDF

Study on Heat Transfer Characteristics by Heater Conditions of Hydrogen Sensor for Fuel Cell Electric Vehicle (연료전지 자동차용 수소센서의 히터 조건에 따른 열전달 특성에 관한 연구)

  • Suh, Hocheol;Park, Kyoungsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • In recent years, development of energy conversion systems using hydrogen as an energy source has been accelerated globally. Even though hydrogen is an environment-friendly energy source, safety and effectiveness issues in storage, transportation, and usage of hydrogen should be clearly resolved in every application. Therefore, sensors for detecting hydrogen leakage, especially for fuel cell electric vehicles, should be designed to have much higher resolution and accuracy in comparison with conventional gas sensors. In this study, we conducted to determine the design parameters for the semiconductor hydrogen sensor with optimized sensing conditions under the thermal distribution characteristic and thermal transfer characteristic. The heat generation study on power supply voltage was studied for correlation analysis of thermal energy according to the power supply voltage variation from 1.0 voltage to 10.0 voltage every 0.5 voltage. And we studied for the temperature coefficient of resistance with hydrogen sensor.

Combustion Diagnostics Method Using Diode Laser Absorption Spectroscopy (다이오드 레이저를 이용한 연소진단기법)

  • Cha, Hak-Joo;Kim, Min-Soo;Shin, Myung-Chul;Kim, Se-Won;Kim, Hyuck-Joo;Han, Jae-Won
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.75-83
    • /
    • 2003
  • Diode laser absorption system is advantageous of their non-invasive nature, fast response time, high sensitivity and real-time measurement capability. Furthermore, recent advances in room-temperature, near-IR and visible diode laser sources for telecommunication, optical data storage applications are enabling combustion diagnostics system based on diode laser absorption spectroscopy. So, combined with fiber-optics and high sensitive detection strategies, compact and portable sensor system are now appearing for a variety of applications. The objective of this research is to take advantage of distributed feed-back diode laser and develope new gas sensing system. It experimentally found out that the wavelength, power characteristics as a function of injection current and temperature. In addition to direct absorption and wavelength modulation spectroscopy have been demonstrated in these experiments and have a bright prospect to this diode laser system.

  • PDF

Gas sensing characteristics of thin film SnO2 sensors with different pretreatments (예비 처리 방법에 따른 박막 SnO2 센서의 가스 감응 특성)

  • Yun, Kwang-Hyun;Kim, Jong-Won;Rue, Gi-Hong;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.309-316
    • /
    • 2006
  • The $SnO_{2}$ thin film sensors were fabricated by a thermal oxidation method. $SnO_{2}$ thin film sensors were treated in $N_{2}$ atmosphere. The sensors with $O_{2}$ treatment after $N_{2}$ treatment showed 70 % sensitivity for 1 ppm $H_{2}S$ gas, which is higher than the sensors with only $O_{2}$ treatment. The Ni metal was evaporated on Sn thin film on the $Al_{2}O_{3}$ substrate. And the sensor was heated to grow the Sn nanowire in the tube furnace with $N_{2}$ atmosphere. Sn nanowire was thermally oxidized in $O_{2}$ environments. The sensitivity of $SnO_{2}$ nanowire sensor was measured at 500 ppb $H_{2}S$ gas. The selectivity of $SnO_{2}$ nanowire sensor compared with thin film and thick film $SnO_{2}$ was measured for $H_{2}S$, CO, and $NH_{3}$ in this study.

A Study on the Annealing Effect of SnO Nanostructures with High Surface Area (높은 표면적을 갖는 SnO 나노구조물의 열처리 효과에 관한 연구)

  • Kim, Jong-Il;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.536-542
    • /
    • 2018
  • Tin dioxide, $SnO_2$, is a well-known n-type semiconductor that shows change in resistance in the presence of gas molecules, such as $H_2$, CO, and $CO_2$. Considerable research has been done on $SnO_2$ semiconductors for gas sensor applications due to their noble property. The nanomaterials exhibit a high surface to volume ratio, which means it has an advantage in the sensing of gas molecules. In this study, SnO nanoplatelets were grown densely on Si substrates using a thermal CVD process. The SnO nanostructures grown by the vapor transport method were post annealed to a $SnO_2$ phase by thermal CVD in an oxygen atmosphere at $830^{\circ}C$ and $1030^{\circ}C$. The pressure of the furnace chamber was maintained at 4.2 Torr. The crystallographic properties of the post-annealed SnO nanostructures were investigated by Raman spectroscopy and XRD. The change in morphology was confirmed by scanning electron microscopy. As a result, the SnO nanostructures were transformed to a $SnO_2$ phase by a post-annealing process.

Dependence of Gas Sensing Properties of Embossed TiO2 Thin Films on Links Between Hollow Hemispheres (엠보싱 TiO2 박막에서 링크 형상 제어에 따른 가스 감도 변화)

  • Moon, Hi-Gyu;Park, Hyung-Ho;Yoon, Seok-Jin;Jang, Ho-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.639-645
    • /
    • 2012
  • Embossed $TiO_2$ thin films with high surface areas are achieved using soft-templates composed of monolayer polystyrene beads. The form of links between the beads in the templates is controlled by varying the $O_2$ plasma etching time on the templates, resulting in various templates with close-linked, nano-linked, and isolated beads. Room-temperature deposition of $TiO_2$ on the plasma-treated templates and calcination at $550^{\circ}C$ result in embossed films with tailored links between anatase $TiO_2$ hollow hemispheres. Although all the embossed films have similar surface areas, the sensitivity of films with nano-linked $TiO_2$ hollow hemispheres to 500 ppm CO and ethanol gases are much higher than that of films with close-linked and isolated hollow hemispheres, and the detection limits of them are as low as 0.6 ppm for CO and 0.1 ppm for ethanol. The strong correlation of sensitivity with the form of links between hollow hemispheres reveals the critical role of potential barriers formed at the links. The facile, large-scale, and on-chip fabrication of embossed $TiO_2$ films with nano-linked hollow hemispheres on Si substrate and the high sensitivity without the aid of additives give us a sustainable competitive advantage over various methods for the fabrication of highly sensitive $TiO_2$-based sensors.

Fabrication and NOx Gas Sensing Properties of LaMeO3 (Me = Cr, Co) by Polymeric Precursor Method (Polymeric Precursor법에 의한 LaMeO3 (Me = Cr, Co)의 제조 및 NOx 가스 검지 특성)

  • Lee, Young-Sung;Shimizu, Y.;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.468-475
    • /
    • 2011
  • [ $LaMeO_3$ ](Me = Cr, Co) powders were prepared using the polymeric precursor method. The effects of the chelating agent and the polymeric additive on the synthesis of the $LaMeO_3$ perovskite were studied. The samples were synthesized using ethylene glycol (EG) as the solvent, acetyl acetone (AcAc) as the chelating agent, and polyvinylpyrrolidone (PVP) as the polymer additive. The thermal decomposition behavior of the precursor powder was characterized using a thermal analysis (TG-DTA). The crystallization and particle sizes of the $LaMeO_3$ powders were investigated via powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and particle size analyzer, respectively. The as-prepared precursor primarily has $LaMeO_3$ at the optimum condition, i.e. for a molar ratio of both metal-source (a : a) : EG (80a : 80a) : AcAc (8a) inclusive of 1 wt% PVP. When the as-prepared precursor was calcined at $700^{\circ}C$, only a single phase was observed to correspond with the orthorhombic structure of $LaCrO_3$ and the rhombohedral structure of $LaCoO_3$. A solid-electrolyte impedance-metric sensor device composed of $Li_{1.5}Al_{0.5}Ti_{1.5}(PO_4)_3$ as a transducer and $LaMeO_3$ as a receptor has been systematically investigated for the detection of NOx in the range of 20 to 250 ppm at $400^{\circ}C$. The sensor responses were able to divide the component between resistance and capacitance. The impedance-metric sensor for the NO showed higher sensitivity compared with $NO_2$. The responses of the impedance-metric sensor device showed dependence on each value of the NOx concentration.

The Application of Octa-Substituted Metallophthalocyanine Langmuir-Blodgett films for $NO_2$ Measurement (수정진동자를 이용한 프탈로시아닌 LB박막의 $NO_2$ 감지 특성)

  • Kwon, H.J.;Lee, Y.J.;Chang, Y.K.;Kim, J.D.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.254-262
    • /
    • 1998
  • Multilayer Langmuir-Blodgett (LB) films coated on quartz crystal microbalance (QCM) of octa-substituted metallophhtalocyanines ($MPc(OEH)_8$, M = Cu, Co, and Sn) and dihydrogen phthalocyanines ($H_2Pc(OEH)_8$) were used to quantify $NO_2$ concentrations. They were exposed to various concentrations of $NO_2$ in dry $N_2$. Among the four phthalocyanines we tested, the metal-free $H_2Pc(OEH)_8$ was observed to be most sensitive to $NO_2$. However, its LB film showed a partially irreversible behavior, that is part of the frequency change due to $NO_2$ adsorption could not be recovered even after purging with pure $N_2$ gas for an extended period. Examining the spectra of NMR and FTIR revealed fact that the irreversible portion of frequency change was due to ether groups in the linkage between side chains and the Pc unit. In order to remove the effect of such initial deactivation, on $NO_2$ quantification experiment, a freshly fabricated LB film was treated at a high concentration of $NO_2$ so that the ether sites were saturated. A pretreated LB film showed a reproducible performance for repeated uses. The $CuPc(OEH)_8$ LB film showed a satisfactory sensing performance down to as low as 4 ppm. For the $H_2Pc(OEH)_8$ LB film, the lower detection limit was found to be 35ppb of $NO_2$. In order to make the experimental condition more realistic, the carrier gas, dry nitrogen, was replaced by air. It was observed that the presence of oxygen, a weak electron acceptor, reduced the sensitivity and thus increased the sensing limit to hundreds of ppb. Results of experiments with moisture added showed that the interference of moisture was quite severe.

  • PDF

Evaluations of Mn-Ni-Co type thermistor thin film for thermal infrared sensing element (열형 적외선 센싱소자용 Mn-Ni-Co계 써미스터 박막 특성 평가)

  • 전민석;최덕균
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.6
    • /
    • pp.297-303
    • /
    • 2003
  • Mn-Ni-Co type thin films were prepared at various conditions by a rf magnetron sputtering system. At the condition. or substrate temperature of $300^{\circ}C$ and $Ar/O_2$= 10/0, a cubic spinel phase was obtained. When oxygen was included in process gas, a cubic spinel phase was not formed even after the thermal annealing at $900^{\circ}C$. The thermistor thin film had no other elements except Mn, Ni and Co. The infrared reflection spectra of the thermistor thin films showed that the films had somewhat high reflectance for incoming infrared ray with some angle. The etch rate of the thermistor thin films was about 63nm/min at a condition of DI water : $HNO_3$: HCl = 60 : 30 : 10 vol%. The B constant and temperature coefficient of resistance of the thermistor thin films were 3500 K and -3.95 %/K, respectively. The voltage responsivity of the thermistor thin film infrared sensor was 108.5 V/W and its noise equivalent power and specific detectivity were $5.1\times 10^{-7}$ W/$Hz^{-1/2}$ and $0.2\times 10^6$cm $Hz^{1/2}$/W, respectively.