DOI QR코드

DOI QR Code

Dependence of Gas Sensing Properties of Embossed TiO2 Thin Films on Links Between Hollow Hemispheres

엠보싱 TiO2 박막에서 링크 형상 제어에 따른 가스 감도 변화

  • Moon, Hi-Gyu (Electronic Materials Research Center, Korea Institute of Science and Technology) ;
  • Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University) ;
  • Yoon, Seok-Jin (Electronic Materials Research Center, Korea Institute of Science and Technology) ;
  • Jang, Ho-Won (Electronic Materials Research Center, Korea Institute of Science and Technology)
  • 문희규 (한국과학기술연구원 전자재료연구센터) ;
  • 박형호 (연세대학교 신소재공학과) ;
  • 윤석진 (한국과학기술연구원 전자재료연구센터) ;
  • 장호원 (한국과학기술연구원 전자재료연구센터)
  • Received : 2012.07.03
  • Accepted : 2012.07.24
  • Published : 2012.08.01

Abstract

Embossed $TiO_2$ thin films with high surface areas are achieved using soft-templates composed of monolayer polystyrene beads. The form of links between the beads in the templates is controlled by varying the $O_2$ plasma etching time on the templates, resulting in various templates with close-linked, nano-linked, and isolated beads. Room-temperature deposition of $TiO_2$ on the plasma-treated templates and calcination at $550^{\circ}C$ result in embossed films with tailored links between anatase $TiO_2$ hollow hemispheres. Although all the embossed films have similar surface areas, the sensitivity of films with nano-linked $TiO_2$ hollow hemispheres to 500 ppm CO and ethanol gases are much higher than that of films with close-linked and isolated hollow hemispheres, and the detection limits of them are as low as 0.6 ppm for CO and 0.1 ppm for ethanol. The strong correlation of sensitivity with the form of links between hollow hemispheres reveals the critical role of potential barriers formed at the links. The facile, large-scale, and on-chip fabrication of embossed $TiO_2$ films with nano-linked hollow hemispheres on Si substrate and the high sensitivity without the aid of additives give us a sustainable competitive advantage over various methods for the fabrication of highly sensitive $TiO_2$-based sensors.

Keywords

References

  1. G. Eranna, B. C. Joshi, D. P. Runthala, and R. P. Gupta, Crit. Rev. Solid State Mater. Sci., 29, 111 (2004). https://doi.org/10.1080/10408430490888977
  2. B. J. Morgan and G. W. Watson, J. Phys. Chem., C114, 2321 (2010). .
  3. G. Korotcenkov, Sens. Actuat., B107, 209 (2005).
  4. N. Yamazoe and K. Shimanoe, Sens. Actuat., B138, 100 (2009).
  5. N. Barsan, D. Koziej, and U. Weimar, Sens. Actuat., B121, 18 (2007).
  6. T. Waitz, T. Wagner, T. Sauerwald, C. D. Koh, and M. Tiemann, Adv. Funct. Mater., 19, 653 (2009). https://doi.org/10.1002/adfm.200801458
  7. J. H. Lee, Sens. Actuat., B140, 319 (2009).
  8. A. M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J. R. Morante, and N. Yamazoe, Sens. Actuat., B103, 312 (2005).
  9. C. S. Rout, G. U. Kulkarni, and C. N. R. Rao, J. Phys., D40, 2777 (2007).
  10. K. D. Benkstein and S. Semancik, Sens. Actuat., B113, 445 (2006).
  11. L. Francioso, A. M. Taurino, A. Forleo, and P. Siciliano, Sens. Actuat., B130, 70 (2008).
  12. O. K. Varghese, D. W. Gong, M. Paulose, K. G. Ong, and C. A. Grimes, Sens. Actuat., B93, 338 (2003).
  13. G. K. Mor, M. A. Carvalho, O. K. Varghese, M. V. Pishko, and C. A. Grimes, J. Mater. Res., 19, 628 (2004). https://doi.org/10.1557/jmr.2004.19.2.628
  14. H. F. Lu, F. Li, G. Liu, Z. G. Chen, D. W. Wang, H. T. Fang, G. Q. Lu, Z. H. Jiang, and H. M. Cheng, Nanotechnology, 19, 405504 (2008). https://doi.org/10.1088/0957-4484/19/40/405504
  15. M. H. Seo, M. Yuasa, T. Kida, J. S. Huh, K. Shimanoe, and N. Yamazoe, Sens. Actuat., B137, 513 (2009).
  16. Y. Wang, G. Du, H. Liu, D. Liu, S. Qin, N. Wang, C. G. Hu, X. Tao, J. Jiao, J. Wang, and Z. L. Wang, Adv. Funct. Mater., 18, 1131 (2008). https://doi.org/10.1002/adfm.200701120
  17. I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, and H. L. Tuller, Nano Lett., 6, 2009 (2006). https://doi.org/10.1021/nl061197h
  18. Z. Y. Li, H. N. Zhang, W. Zheng, W. Wang, H. M. Huang, C. Wang, A. G. MacDiarmid, and Y. Wei, J. Am. Chem. Soc., 130, 5036 (2008). https://doi.org/10.1021/ja800176s
  19. J. Moon, J. A. Park, S. J. Lee, T. Zyung, and I. D. Kim, Sens. Actuat., B149, 301 (2010).
  20. X. W. Lou, L. A. Archer, and Z. C. Yang, Adv. Mater., 20, 3987 (2008). https://doi.org/10.1002/adma.200800854
  21. Y. Wan and D. Y. Zhao, Chem. Rev., 107, 2821 (2007). https://doi.org/10.1021/cr068020s
  22. F. Q. Sun, W. P. Cai, Y. Li, L. C. Jia, and F. Lu, Adv. Mater., 17, 2872 (2005). https://doi.org/10.1002/adma.200500936
  23. I. D. Kim, A. Rothschild, D. J. Yang, and H. L. Tuller, Sens. Actuat., B130, 9 (2008).
  24. H. G. Moon, H. W. Jang, J. S. Kim, H. H. Park, and S. J. Yoon, Electron. Mater. Lett., 6, 31 (2010). https://doi.org/10.3365/eml.2010.03.031
  25. H. G. Moon, Y. S. Shim, D. Su, H. H. Park, S. J. Yoon, and H. W. Jang, J. Phys. Chem., C115, 9993 (2011).