• Title/Summary/Keyword: CO gas sensing

Search Result 219, Processing Time 0.027 seconds

A Technical Note on Monitoring Methods for Volcanic Gases (화산가스의 채취 및 분석에 대한 기술보고)

  • Lee, Seungyeol;Lee, Sangchul;Yang, Kyounghee;Jeong, Hoon Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.415-429
    • /
    • 2012
  • The monitoring methods for volcanic gases are divided into remote sensing and direct gas sampling approaches. In the remote sensing approach, COSPEC and Li-COR are used to measure $SO_2$ and $CO_2$, respectively, with FT-IR for detection of a range of volcanic gases. However, the remote sensing approach is not applicable to Mt. Baegdu, where the atmospheric contents of volcanic gases are very low as a result of the strong interaction of volcanic gases with the nearby surface water and groundwater. On the other hand, the direct gas sampling approach involves the collection of volcanic gases from volcanic vents or fumaroles and the subsequent laboratory analysis, thus making it possible to measure even very low levels of volcanic gases. The direct sampling approach can be subdivided into the evacuated bottle method and the flow-through bottle method. In applying both methods, sampling bottles typically contain reaction media to trap specific volcanic gases. For example, NaOH solution(Giggenbach bottle), $NH_4OH$ solution, and acid condensates have been experimented for volcanic gas sampling. Once taken from vents and fumaroles, the samples of volcanic gases are pretreated and subsequently analyzed for volcanic gases using GC, IC, HPLC, titrimetry, TOC-IC, or ICP-MS. Recently, there has been the increasing number of evidences on the potential volcanic activity of Mt. Baegdu. However, little technical development has been made for the sampling and analysis of volcanic gases in Korea. In the present work, we reviewed various volcanic gas monitoring methods, and provided the detailed information on the monitoring methods applied to Mt. Baegdu.

Bio-inspired Cr2O3 and Co3O4 Nanoparticles Loaded Electrospun WO3 Nanofiber Chemical Sensor for Early Diagnosis of Halitosis (고분산성 Cr2O3 및 Co3O4 전이금속 나노입자 촉매가 기능화된 다공성 WO3 나노섬유를 이용한 구취진단용 화학센서)

  • Jang, Ji-Soo;Kim, Sang-Joon;Choi, Seon-Jin;Koo, Won-Tae;Kim, Il-Doo
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.223-228
    • /
    • 2016
  • In this work, we prepared porous WO3 nanofibers (NFs) functionalized by bio-inspired catalytic $Cr_2O_3$ and $Co_3O_4$ nanoparticles as highly sensitive and selective $H_2S$ gas sensing layers. Highly porous 3-dimensional (3D) NFs networks decorated by well-dispersed catalyst NPs exhibited superior $H_2S$ gas response ($R_{air}/R_{gas}$ = 46 at 5 ppm) in high humidity environment (95 %RH). In particular, the sensors showed outstanding $H_2S$ selectivity against other interfering analytes (such as acetone, toluene, CO, $H_2$, ethanol). Exhaled breath sensors using $Cr_2O_3$ and $Co_3O_4$ catalysts-loaded $WO_3$ NFs are highly promising for the accurate detection of halitosis.

MEMS based on nanoparticle gas sensor for air quality system (유해가스 차단시스템용 MEMS 가스 센서)

  • Lee, Eui-Bok;Park, Young-Wook;Hwang, In-Sung;Kim, Sun-Jung;Cha, Jun-Gho;Lee, Ho-Jun;Lee, Jong-Heun;Ju, Byeong-Kwon
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.37-42
    • /
    • 2009
  • In this study, nanopower ZnO and $SnO_2$ as sensing materials were prepared by hydrazine and hydrothermal routes, respectively, and were doped with Pd, Ru catalyst. The CO and $NO_2$ sensors were fabricated by coating of sensing materials on the MEMS-based structure with electrodes and heaters. The 0.1 wt% Pd doped $SnO_2$ sensor and Ru doped ZnO sensor showed the high sensor response to CO 30 ppm and $NO_2$ 1 ppm, respectively. The sensor signal was stable. This can be used for the detection of pollutant gases emitted from gasoline engine.

  • PDF

Characteristics of Surface Reaction of SnO2 Thin Films Prepared by MOCVD (MOCVD로 제조한 SnO2 박막의 표면반응 특성)

  • Park, Kyung-Hee;Seo, Yong-Jin;Hong, Kwang-Jun;Lee, Woo-Sun;Park, Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.309-312
    • /
    • 2003
  • Tin dioxide($_SnO2$) thin films were deposited on alumina substrate by metal-organic chemical vapor deposition (MOCVD) as a function of temperature and time. Thin films were fabricated from di-n-butyltin diacetate as a precursor and oxygen as an oxidation. The microstructure of deposited films was characterized by X-ray diffraction and field emission scanning electron microscopy(FE-SEM). The thickness was linearly increased with deposition time and $SnO_2$structure was found from $375^{\circ}C$ for the deposition time of 32 min. The maximum sensitivity to 500ppm CO gas was observed for the specimens deposited at $375^{\circ}C$ for 2 min at the operating temperature of $350^{\circ}C$. Gas sensitivity to CO increased with decreasing the film thickness. The sensing properties of response time, recovery and sensitivity of CO were changed with variations of substrate temperature and time.

Application of Temperature Inversion by Using Spectral Radiation Intensities (파장별 복사강도를 사용한 온도 역계산의 적용)

  • Yang, Soo-Seok;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.533-542
    • /
    • 2000
  • Analytical experiments to determine the line-of-sight temperature distribution is conducted by using spectral radiation intensities. For this study, fourteen narrow bands of $25cm^{-1}$ interval in $CO_2\;4.3{\mu}m$ band ($2,050cm^{-1}$ to $2375cm^{-1}$) are selected. The applied system is a one-dimensional gas slab filled with 100% $CO_2$ gas at 1 atm. Two types of temperature profile are tested; parabolic and boundary layer types. Three kinds of radiation calculation are used in the iteration procedure for the temperature inversion; LBL(Line by Line), SNB(Statistical Narrow Band) and WNB(WSGGM. based Narrow Band) models. The LBL solution shows perfect agreement while some error of temperature prediction is caused by radiation modeling error when using SNB and WNB models. The inversion result shows that the WNB model may be used more accurately in spectral remote sensing techniques than the traditional SNB model.

Analysis of Tropospheric Carbon Monoxide using MOPITT data

  • Lee, Sang-Hee;Park, Gi-Hyuk;Lim, Hyo-Suk;Lee, Joo-Hee
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.373-377
    • /
    • 2002
  • The Measurement of Pollution in the Troposphere (MOPITT) instrument is an eight-channel gas correlation radiometer launched on the Earth Observing System (EOS) Terra spacecraft in 1999. Its main objectives are to measure carbon monoxide (CO) and methane (CH4) concentrations in the troposphere. This work analyzes tropospheric carbon monoxide distributions using MOPITT data in East Asia and compared ozone distributions. In general, seasonal CO variations are characterized by a spring peak and decreased in the summer. Also, this work revealed that the seasonal cycles of CO are spring maximum and summer minimum with averaged concentrations ranging from 118ppbv to 170ppbv. The CO monthly means show a similar profiles to those of O3. This fact clearly indicates that the high concentration of CO in spring is caused by two possible causes: the photochemical CO production in the troposphere, transport of the CO in the northeast Asia. The CO and O3 seasonal cycles in northeast Asia are influenced extensively by the seasonal exchange of the different types of air mass due to the Asian monsoon. The continental air masses contain high concentrations of O3 and CO due to higher continental background concentrations and sometimes due to the contribution of regional pollution. In summer the transport pattern is reversed. The Pacific marine air masses prevail over Korea, so that the marine air masses bring low concentrations of CO and O3, which tend to give the apparent minimum in summer.

  • PDF

$CO_{2}$ Gas Sensing Characteristics of Lithium ionic Solid Electrolyte prepared by Sol-gel Method (Sol-gel법에 의한 Li 이온-고체 전해질의 $CO_{2}$ 가스 감지 특성)

  • Seo, Moo-Gyo;Song, Kap-Duk;Kwak, Jong-Sik;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.22-29
    • /
    • 1995
  • Lithium ionic solid electrolyte was synthesized at $60^{\circ}C$ in $N_{2}$ ambience by sol-gel method, using tetraethyl orthosilcate, lithium methoxide, zirconium n-propoxide, and tributyle phosphate as precursors. The prepared material was dried and crushed into powder, and it was pressed into disk type samples. These samples were sintered at $900^{\circ}C{\sim}1100^{\circ}C$ for 50 hours. The physical characteristics of the samples were investigated by TG/DTA, SEM, AES and XRD methods. $CO_{2}$ sensor based on lithium ionic solid electrolyte was fabricated and its operational characteristics were measured. The sensing characteristics of the sensor sintered at $1000^{\circ}C$ shows the variation of e.m.f. about $35{\sim}63\;mV/decade$ for the variation of $CO_{2}$ concentration at $200^{\circ}C{\sim}300^{\circ}C$ of operating temperature, and good linearity for $300{\sim}6000\;ppm$.

  • PDF

Simple Iysine sensing system using $CO_{2}$ electrode and enzyme immobilized to CNBr-activated sepharose 4B

  • Kim, Eun-Jung;Koh, Kwang-Nak;Choi, Myung-Sook
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.437-444
    • /
    • 1997
  • A potentiometric L-lysine-selective sensor is described for the direct determination of lysine. The sensor system is based on a carbon dioxide gas sensing electrode and an L-lysine decarboxylase immobilized to CNBr-activated sepharose 4B. A highly selective L-lysine sensor has been prepared with immobilizing enzyme slurry put into reaction buffer solution. The optimum conditions for the measurement were evaluated by various experiments. This sensor exhibits a linear response to L-lysine concentrations from $10^{-4}M$ to $10^{-1}M$. Response time of this lysine sensor is shorter than 30secs and the immobilized enzyme slurry is stable over one year.

  • PDF

Research on Damage Identification of Buried Pipeline Based on Fiber Optic Vibration Signal

  • Weihong Lin;Wei Peng;Yong Kong;Zimin Shen;Yuzhou Du;Leihong Zhang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.511-517
    • /
    • 2023
  • Pipelines play an important role in urban water supply and drainage, oil and gas transmission, etc. This paper presents a technique for pattern recognition of fiber optic vibration signals collected by a distributed vibration sensing (DVS) system using a deep learning residual network (ResNet). The optical fiber is laid on the pipeline, and the signal is collected by the DVS system and converted into a 64 × 64 single-channel grayscale image. The grayscale image is input into the ResNet to extract features, and finally the K-nearest-neighbors (KNN) algorithm is used to achieve the classification and recognition of pipeline damage.

Fabrication and characteristics of limit-current type oxygen sensor with monolith aperture structure (일체화된 Aperture 구조의 한계전류형 산소센서의 제작 및 특성)

  • Oh, Young-Jei;Lee, Deuk Yong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.273-280
    • /
    • 2008
  • Monolith aperture-type oxygen sensors with simple structure of YSZ(pin-hole)/Pt/ YSZ(solid electrolyte)/Pt were fabricated by co-firing technique. To enhance the yield of productivity, a couple of YSZ green sheets for diffused barrier and solid electrolyte were prepared by tape-casting and co-firing method. The limit current characteristics of the oxygen sensors were measured between 500 and $650^{\circ}C$ The heating temperature of $600^{\circ}C$ was optimum as a portable oxygen sensor in the range of oxygen concentration from 0 to 75 vol%. Linear proficiency of limit current behavior as a function of oxygen concentration was controlled by the variation of aperture dimension. The fabricated oxygen sensors showed the stable sensing output for 30 days. Gas leakage in bonding area due to warping, cracking and thermal cycling was not found in the period.