• Title/Summary/Keyword: CO detector

Search Result 513, Processing Time 0.031 seconds

Analysis of DA-6034. a New Flavonoid Derivative in Biological Fluids by Fluorescence Detector

  • Jang, Ji-Myun;Park, Kyung-Jin;Lee, Jong-Jin;Kim, Dong-Goo;Shim, Hyun-Joo;Son, Mi-Won;Kim, Dong-Sung;Kim, Soon-Hoe;Yoo, Moo-Hi
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.403.2-403.2
    • /
    • 2002
  • A high performance liquid chromatographic method was developed for the determination of DA-6034 in biological fluids using fluorescence detector. The method involved deproteinization of biological sample with the same volume of acetonitrile, 0.2M zinc sulphate. and 0.15M barium hydroxide. The aliquot of supernatant was injected onto Nova-pak C18 column and detected by fluorescence detector. Emission and excitation wavelength of detector were 336nm and 440nm. (omitted)

  • PDF

Development of NDIR CO2 Gas Detector Using Thermopile Sensor (써모파일 센서를 이용한 NDIR CO2 가스검출기의 개발)

  • Cho, Si-Hyung;Park, Chan-Won
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.35-38
    • /
    • 2012
  • We present a novel non-dispersive infrared (NDIR) $CO_2$ gas sensor with a light source emitting collimated light. Using this thermopile, we also have successfully developed a small, sensitive NDIR $CO_2$ detector module for accurate air quality monitoring systems in energy-saving building and automotive applications. The novel sample cavity comprising specular reflectors around the light bulb is configured to uniformly emit collimated light into the entrance aperture of the cavity in order to enhance the sensitivity of NDIR $CO_2$ detector.

  • PDF

Development of an efficient method of radiation characteristic analysis using a portable simultaneous measurement system for neutron and gamma-ray

  • Jin, Dong-Sik;Hong, Yong-Ho;Kim, Hui-Gyeong;Kwak, Sang-Soo;Lee, Jae-Geun;Jung, Young-Suk
    • Analytical Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.69-81
    • /
    • 2022
  • The method of measuring and classifying the energy category of neutrons directly using raw data acquired through a CZT detector is not satisfactory, in terms of accuracy and efficiency, because of its poor energy resolution and low measurement efficiency. Moreover, this method of measuring and analyzing the characteristics of low-energy or low-activity gamma-ray sources might be not accurate and efficient in the case of neutrons because of various factors, such as the noise of the CZT detector itself and the influence of environmental radiation. We have therefore developed an efficient method of analyzing radiation characteristics using a neutron and gamma-ray analysis algorithm for the rapid and clear identification of the type, energy, and radioactivity of gamma-ray sources as well as the detection and classification of the energy category (fast or thermal neutrons) of neutron sources, employing raw data acquired through a CZT detector. The neutron analysis algorithm is based on the fact that in the energy-spectrum channel of 558.6 keV emitted in the nuclear reaction 113Cd + 1n → 114Cd + in the CZT detector, there is a notable difference in detection information between a CZT detector without a PE modulator and a CZT detector with a PE modulator, but there is no significant difference between the two detectors in other energy-spectrum channels. In addition, the gamma-ray analysis algorithm uses the difference in the detection information of the CZT detector between the unique characteristic energy-spectrum channel of a gamma-ray source and other channels. This efficient method of analyzing radiation characteristics is expected to be useful for the rapid radiation detection and accurate information collection on radiation sources, which are required to minimize radiation damage and manage accidents in national disaster situations, such as large-scale radioactivity leak accidents at nuclear power plants or nuclear material handling facilities.

A Study on Fire Alarm Test of IoT Multi-Fire Detector combined Smoke/CO and Smoke/Temperature Sensors (연기/CO 및 연기/열 복합형 IoT 멀티 화재 감지기의 화재감지실험 연구)

  • Son, Geun­Sik;So, Soo­Hyun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.236-244
    • /
    • 2021
  • Purpose: The purpose of this study is to develop IoT multi-fire detectors combined smoke/carbon monoxide/heat and wireless IoT communication and to confirm the detect performance by smoke generator fire test and cotton wicks fire test. Method: The IoT multi-fire detector combined smoke and CO and combined smoke and heat were experimented the detect performance by smoke generator test and fire test of cotton wicks. And the case of fire alarm was checked. Result: The IoT multi-fire detector combined smoke and CO rung the alarm at the fire test of cotton wicks, did not ring the alarm at the smoke generator test. In comparison, the IoT multi-fire detector combined smoke and heat did not ring the alarm both at the smoke generator test and the fire test of cotton wicks. Conclusion: The IoT multi-fire detector combined smoke and CO detected the only smoke including the carbon monoxide and the IoT multi-fire detector combined smoke and heat did not ring the alarm for lack of heat. As a result, when the developed IoT multi-fire detector was detected the signal more than the set point, the fire alarm was sounded through cotton wicks fire test and smoke generator.

A Study on the Technology of Measuring and Analyzing Neutrons and Gamma-Rays Using a CZT Semiconductor Detector (CZT 반도체 검출기를 활용한 중성자 및 감마선 측정과 분석 기술에 관한 연구)

  • Jin, Dong-Sik;Hong, Yong-Ho;Kim, Hui-Gyeong;Kwak, Sang-Soo;Lee, Jae-Geun
    • Journal of radiological science and technology
    • /
    • v.45 no.1
    • /
    • pp.57-67
    • /
    • 2022
  • CZT detectors, which are compound semiconductors that have been widely used recently for gamma-ray detection purposes, are difficult to detect neutrons because direct interaction with them does not occur unlike gamma-rays. In this paper, a method of detecting and determining energy levels (fast neutrons and thermal neutrons) of neutrons, in addition of identifying energy and nuclide of gamma-rays, and evaluating gamma dose rates using a CZT semiconductor detector is described. Neutrons may be detected by a secondary photoelectric effect or compton scattering process with a characteristic gamma-ray of 558.6 keV generated by a capture reaction (113Cd + 1n → 114Cd + 𝛾) with cadmium (Cd) in the CZT detector. However, in the case of fast neutrons, the probability of capture reaction with cadmium (Cd) is very low, so it must be moderated to thermal neutrons using a moderator and the material and thickness of moderator should be determined in consideration of the portability and detection efficiency of the equipment. Conversely, in the case of thermal neutrons, the detection efficiency decreases due to shielding effect of moderator itself, so additional CZT detector that do not contain moderator must be configured. The CZT detector that does not contain moderator can be used to evaluate energy, nuclide, and gamma dose-rate for gamma-rays. The technology proposed in this paper provides a method for detecting both neutrons and gamma-rays using a CZT detector.

A Study on image noise removal of $2^{nd}$ electron detector for a E-Beam Lithography (전자빔 가공기를 위한 2 차 전자 검출기의 영상 노이즈 제거에 관한 연구)

  • Im Y.B.;Moon H.M.;Joe H.T.;Paek Y.J.;Lee C.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1741-1744
    • /
    • 2005
  • The electron beam machining provides very high resolution up to nanometer scale, hence the E-Beam writing technology is rapidly growing in MEMS and nano-engineering areas. For E-Beam machining, $2^{nd}$ electron detector is required to see a machined sample at the stage. The $2^{nd}$ electron detector is composed of scintillator and photomultiplier with signal amplifier and high voltage power supplier. Since a photomultiplier tube is an extremely high-sensitivity photodetector, the signal light level to be detected is very low and therefore particular care must be exercised in shielding external light. In this paper, the design methodology of $2^{nd}$ electron detector and the image noise removal method are introduced.

  • PDF

Development of Fast-Response Portable NDIR Analyzer Using Semiconductor Devices

  • Kim, Woo-Seok;Lee, Jong-Hwa;Park, Young-Moo;Yoo, Jai-Suk;Park, Kyoung-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2099-2106
    • /
    • 2003
  • In this paper, a novel fast response NDIR analyzer (FRNDIR), which uses an electrically pulsed semiconductor emitter and dual type PbSe detector for the PPM-level detection of carbon dioxide (CO$_2$) at a wavelength of 4.28 $\mu\textrm{m}$, is described. Modulation of conventional NDIR energy typically occurs at 1 to 20 Hz. To achieve real time high-speed measurement, the new analyzer employs a semiconductor light emitter that can be modulated by electrical chopping. Updated measurements are obtained every one millisecond. The detector has two independent lead selenide (PbSe) with IR band pass filters. Both the emitter accuracy and the detector sensitivity are increased by thermoelectric cooling of up to -20 degrees C in all semiconductor devices. Here we report the use of semiconductor devices to achieve improved performance such that these devices have potential application to CO$_2$ gas measurement and, in particular, the measurement of fast response CO$_2$ concentration at millisecond level.

Structure optimization and characterization of a microbolometer for a CO2 detector (이산화탄소 감지소자를 위한 마이크로볼로미터 구조 최적화 및 특성연구)

  • Seo, Ho-Won;Kim, Tae-Geun;Moon, Sung
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.75-80
    • /
    • 2008
  • In this work, we optimized a microbolometer for application of a $CO_2$ detector by using MEMS technology. We fabricated a stable thermal isolation structure by varying the lengths of supporting legs which affect bolometer performance. We could fabricate more stable thermal isolation structure for the microbolometer through the results of ANSYS simulations, and minimize the fabrication processes by using bulk micromachining to use a $CO_2$ detector. The microbolometer shows a detectivity of $2.5{\times}109$ cmHz$^{1/2}$/W at a chopper frequency of 8 Hz and a bias current of $6.25\;{\mu}A$ with a vacuum package of about $3.0{\times}10.3$ torr. Therefore, we put to conclusion that the microbolometer optimized in this experiment could be useful for the application of a $CO_2$ detector.

Growth and characterization of detector-grade CdMnTeSe

  • J. Byun ;J. Seo;J. Seo ;B. Park
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4215-4219
    • /
    • 2022
  • The Cd0.95Mn0.05Te0.98Se0.02 (CMTS) ingot was grown by the vertical Bridgman technique at low pressure. All wafers showed high resistivity, which suggests potential as a room-temperature semiconductor detector. The resistivity of the CMTS planar detector was 1.47 × 1010 Ω·cm and mobility lifetime product of electrons was 1.29 × 10-3 cm2/V. The spectroscopic property with Am-241 and Co-57 was evaluated. The energy resolution about 59.5 keV gamma-ray of Am-241 was 11% and the photo-peak of 122 keV gamma-ray from Co-57 was clearly distinguished. The result shows the first detector-grade CMTS in the world and proves CMTS's potential as a radiation detector operating at room temperature.