• Title/Summary/Keyword: CNT-

Search Result 1,319, Processing Time 0.027 seconds

A study on design for animal X-ray detector using CFRP CNT panel (CFRP CNT 패널을 적용한 동물용 X-ray 디텍터 디자인에 관한 연구)

  • Lee, Suk-Hyun;Kim, Hyun-Sung;Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.264-270
    • /
    • 2020
  • Design was developed through user-oriented service design methodology and survey was conducted on material selection criteria for prototype production to select CFRP (Carbon Fiber Reinforced Plastics) CNT (Carbon Nano Tube), which was applied to animal X-ray detector panel to design product and develop prototype. Completed prototype with the application of CFRP CNT panel was tested in drop test, frontal external pressure test, and dustproof/waterproof performance to confirm that it can be utilized as a portable animal X-ray detector used in outdoor environment.

Characteristics of Workers' Exposure to Aerosolized Particles during the Production of Carbon Nanotube-enabled Composites (탄소나노튜브 복합체 취급 작업자의 공기 중 입자상 물질 노출 특성)

  • Kwon, Jiwoon;Kim, Sungho;Jang, Miyeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Objectives: The purpose of this case study is to assess workers' exposure to carbon nanotubes(CNTs) and characterize particles aerosolized during the process of producing CNT-enabled polytetrafuoroethylene(PTFE) composites at a worksite in Korea. Methods: Personal breathing zone and area samples were collected for determining respirable concentrations of elemental carbon(EC) using NIOSH(National Institute for Occupational Safety and Health) Method 5040. Personal exposure to nano-sized particles was measured as the number concentration and mean diameter using personal ultrafine particle monitors. The number concentration by particle size was measured using optical particle sizers(OPS) and scanning mobility particle sizers(SMPS). Transmission electron microscopy (TEM) area samples were collected on TEM grids and analyzed to characterize the size, morphology, and chemistry of the particles. Results: Respirable EC concentrations ranged from 0.04 to 0.24 ㎍/㎥, which were below 23% of the exposure limit recommended by NIOSH and lower than background concentrations. Number concentrations by particle size measured using OPS and SMPS were not noticeably elevated during CNT-PTFE composite work. Instant increase of number concentrations of nano-sized particles was observed during manual sanding of CNT-PTFE composites. Both number concentrations and mean diameters did not show a statistically significant difference between workers handing CNT-added and not-added materials. TEM analyses revealed the emission of free-standing CNTs and CNT-PTFE aggregate particles from the powder supply task and composite particles embedded with CNTs from the computer numerical control(CNC) machining task with more than tens of micrometers in diameter. No free-standing CNT particles were observed from the CNC machining task. Conclusions: Significant worker exposure to respirable CNTs was not found, but the aerosolization of CNTs and CNT-embedded composite particles were observed during handing of CNT-PTFE powders and CNC machining of CNT-PTFE composites. Considering the limited knowledge on the toxicity of CNTs and CNT composite particles to date, it seems prudent to take a precautionary approach for the protection of workers' health.

Improvement of Interfacial Adhesion of Plasma Treated Single Carbon Fiber Reinforced CNT-Phenolic Nanocomposites by Electrical Resistance Measurement and Wettability (젖음성 및 전기저항 측정을 이용한 플라즈마 처리된 단일 탄소섬유 강화 탄소나노튜브-페놀수지 나노복합재료의 계면접착력 향상)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Jong-Kyoo;Lee, Woo-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.12 no.3
    • /
    • pp.88-93
    • /
    • 2011
  • Optimal dispersion and fabrication conditions of carbon nanotube (CNT) embedded in phenolic resin were determined by electrical resistance measurement; and interfacial property was investigated between plasma treated carbon fiber and CNT-phenolic composites by electro-micromechanical techniques. Wettability of carbon fiber was improved significantly after plasma treatment. Surface energies of carbon fiber and CNT-phenolic nanocomposites were measured using Wilhelmy plate technique. Since surface activation of carbon fiber, the advancing contact angle decreased from $65^{\circ}$ to $28^{\circ}$ after plasma treatment. It was consistent with static contact angle results of carbon fiber. Work of adhesion between plasma treated carbon fiber and CNT-phenolic nanocomposites was higher than that without modification. The interfacial shear strength (IFSS) and apparent modulus also increased with plasma treatment of carbon fiber.

Preparation and Electrochemical Properties of Freestanding Flexible S/CNT/NiO Electrodes for Li-S Batteries (리튬-황 전지용 프리스탠딩 플렉서블 S/CNT/NiO 전극의 제조 및 전기화학적 특성)

  • Shin, Yun Jung;Lee, Won Yeol;Kim, Tae Yun;Moon, Seung-Guen;Jin, En Mei;Jeong, Sang Mun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.184-192
    • /
    • 2022
  • Porous NiO synthesized via hydrothermal synthesis was used in the electrodes of lithium-sulfur batteries to inhibit the elution of lithium polysulfide. The electrode of the lithium-sulfur battery was manufactured as a freestanding flexible electrode using an economical and simple vacuum filtration method without a current collector and a binder. The porous NiO-added S/CNT/NiO electrode exhibited a high initial discharge capacity of 877 mA h g-1 (0.2 C), which was 125 mA h g-1 higher than that of S/CNT, and also showed excellent retention of 84% (S/CNT: 66%). This is the result of suppressing the dissolution of lithium polysulfide into the electrolyte by the strong chemical bond between NiO and lithium polysulfide during the charging and discharging process. In addition, for the flexibility test of the S/CNT/NiO electrode, the 1.6 × 4 cm2 pouch cell was prepared and exhibited stable cycle characteristics of 620 mA h g-1 in both the unfolded and folded state.

Synthesis of porous-structured (Ni,Co)Se2-CNT microsphere and its electrochemical properties as anode for sodium-ion batteries (다공성 구조를 갖는 (Ni,Co)Se2-CNT microsphere의 합성과 소듐 이차전지 음극활물질로서의 전기화학적 특성 연구)

  • Yeong Beom Kim;Gi Dae Park
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.178-184
    • /
    • 2023
  • Transition metal chalcogenides have garnered significant attention as anode materials for sodium-ion batteries due to their high theoretical capacity. Nevertheless, their practical application is impeded by their limited lifespan resulting from substantial volume expansion during cycling and their low electrical conductivity. To tackle these issues, this study devised a solution by synthesizing a nanostructured anode material composed of porous CNT (carbon nanotube) spheres and (Ni,Co)Se2 nanocrystals. By employing spray pyrolysis and subsequent heat treatments, a porous-structured (Ni,Co)Se2-CNT composite microsphere was successfully synthesized, and its electrochemical properties as an anode for sodium-ion batteries were evaluated. The synthesized (Ni,Co)Se2-CNT microsphere possesses a porous structure due to the nanovoids that formed as a result of the decomposition of the polystyrene (PS) nanobeads during spray pyrolysis. This porous structure can effectively accommodate the volume expansion that occurs during repeated cycling, while the CNT scaffold enhances electronic conductivity. Consequently, the (Ni,Co)Se2-CNT anode exhibited an initial discharge capacity of 698 mA h g-1 and maintained a high discharge capacity of 400 mA h g-1 after 100 cycles at a current density of 0.2 A g-1.

NO Gas Sensing Properties of ZnO-Carbon Nanotube Composites (산화아연-탄소나노튜브 복합체의 일산화질소 가스 감지 특성)

  • Park, Seong-Yong;Jung, Hoon-Chul;Ahn, Eun-Seong;Nguyen, Le Hung;Kang, Youn-Jin;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.655-659
    • /
    • 2008
  • The NO gas sensing properties of ZnO-carbon nanotube (ZnO-CNT) composites fabricated by the coaxial coating of single-walled CNTs with ZnO were investigated using pulsed laser deposition. Upon examination, the morphology and crystallinity of the ZnO-CNT composites showed that CNTs were uniformly coated with polycrystalline ZnO with a grain size as small as 5-10 nm. Gas sensing measurements clearly indicated a remarkable enhancement of the sensitivity of ZnO-CNT composites for NO gas compared to that of ZnO films while maintaining the strong sensing stability of the composites, properties that CNT-based sensing materials do not have. The enhanced gas sensing properties of the ZnO-CNT composites are attributed to an increase in the surface adsorption area of the ZnO layer via the coating by CNTs of a high surface-to-volume ratio structure. These results suggest that the ZnO-CNT composite is a promising template for novel solid-state semiconducting gas sensors.

Characteristics of Pt, Pt-Ru and Pt-CeO2 Catalysts Supported on Carbon Nanotubes for Methanol Fuel Cell (탄소 나노튜브에 담지된 Pt, Pt-Ru 및 Pt-CeO2 메탄올 연료전지 촉매의 특성)

  • Hwang, Gui-Sung;Lee, Rhim-Youl
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.138-143
    • /
    • 2011
  • Nanosized Pt, Pt-Ru and Pt-$CeO_2$ electrocatalysts supported on acid-treated carbon nanotube (CNT) were synthesized by microwave-assisted heating of polyol process using $H_2Cl_6Pt{\cdot}6H_2O$, $RuCl_3$, $CeCl_3$ precursors, respectively, and were characterized by XRD and TEM. And then the electrochemical activity of methanol oxidation for catalyst/CNT nanocomposite electrodes was investigated. The microwave assisted polyol process produced the nano-sized crystalline catalysts particles on CNT. The size of Pt supported on CNT was 7~12 nm but it decreased to 3~5 nm in which 10wt% sodium acetate was added as a stabilizer during the polyol process. This fine Pt catalyst particles resulted in a higher current density for Pt/CNT electrode. It was also found that 10 nm size of PtRu alloys were formed by polyol process and the onset potential decreased with Ru addition. Cyclic voltammetry analysis revealed that the $Pt_{75}Ru_{25}/CNT$ electrode had the highest electrochemical activity owing to a higher ratio of the forward to reverse anodic peak current. And the chronoamperemetry test showed that $Pt_{75}Ru_{25}$ catalyst had a good catalyst stability. The activity of Pt was also found to be improved with the addition of $CeO_2$.

Synthesis and Characterization of CNT / TiO2 Photoelectrocatalytic Electrodes for Methlene Blue Degradation

  • Zhang, Feng-Jun;Chen, Ming-Liang;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.583-591
    • /
    • 2008
  • In this study, two series of CNT/$TiO_2$ electrodes were prepared. The decrease of surface area compared with that of the pristine carbon nanotubes (CNTs) indicated the blocking of micropores on the surface of the CNTs; was further supported by scanning electron microscopy (SEM) and field emission SEM (FE-SEM) observations. The X-ray diffraction (XRD) results showed that the CNT/$TiO_2$ composites contained a mix of anatase and rutile forms of $TiO_2$ particles when the precursor was $TiO_2$ powder, whereas when the precursor was Ti ($OC_4H_7$) (TNB), the composites contained only the typical single and clear anatase $TiO_2$ particles. The energy dispersive X-ray spectroscopy (EDX) spectra showed the presence of C, O and Ti peaks for all samples. It was found that catalytic decomposition of methylene blue (MB) solution could be attributed to synthetic effects between the $TiO_2$ photocatalysis and electro-assisted CNTs network, and that photoelectrocatalytic oxidation increased with an increase of CNT composition. It was also found that the photoelectrocatalytic oxidation efficiency for MB is higher than that of photocatalytic oxidation. Moreover, the CNT/$TiO_2$ composites catalyst prepared by the impregnation method demonstrates higher photoelectrocatalytic activity than the mechanical mixture with the same CNT content.

A Study on Performance Improvement of Glucose Sensor Adopting a Catalyst Using New Cross Liker (새로운 가교제를 적용한 촉매를 이용한 글루코스 센서의 성능향상 연구)

  • Chung, Yongjin;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.802-807
    • /
    • 2015
  • In this study, we synthesized a new biocatalyst consisting of glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT) with addition of terephthalaldehyde (TPA) (TPA/GOx/PEI/CNT) for fabrication of glucose sensor that shows improved sensing ability and stability compared with that using other biocatalysts. Main bonding of the new TPA/GOx/PEI/CNT catalyst is formed by Aldol condensation reaction of functional end groups between GOx/PEI and TPA. Such formed bonding structure promotes oxidation reaction of glucose. Catalytic activity of TPA/GOx/PEI/CNT is evaluated quantitatively by electrochemical measurements. As a result of that, large sensitivity value of $41{\mu}Acm^{-2}mM^{-1}$ is gained. Regarding biosensor stability of TPA/GOx/PEI/CNT catalyst, covalent bonding formed between GOx/PEI and TPA prevents GOx molecules from becoming leaching-out and contributes improvement in biosensor stability. With estimation of the biosensor stability, it is found that the TPA/GOx/PEI/CNT catalyst keeps 94.6% of its initial activity even after three weeks.

Electrochemical Performance of Li4Ti5O12 with Graphene/CNT Addition for Lithium Ion Battery (리튬이온전지 음극활물질 Li4Ti5O12의 그래핀/CNT 첨가에 따른 전기화학적 특성)

  • Kim, Sang Baek;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.430-435
    • /
    • 2017
  • $Li_4Ti_5O_{12}$ (LTO) is an anode material for lithium ion battery, and the cycle performance is very good. The volume change of LTO during insertion and deinsertion of lithium ion is very small, so the cyclibility is very high. In this experiment graphene and CNT was added to increase the low conductivity of LTO which is the weak point of LTO. When graphene was located on the surface of LTO the conductivity did not increase so much because of the nano size LTO. Addition of CNT increased the conductivity because of the formation of the conducting network between LTO particle and the graphene. Carbon material addition was changed before and after the LTO manufacturing, and the capacity and the cyclibility was compared.