• Title/Summary/Keyword: CNT-

Search Result 1,316, Processing Time 0.025 seconds

Temperature-dependent nonlocal nonlinear buckling analysis of functionally graded SWCNT-reinforced microplates embedded in an orthotropic elastomeric medium

  • Barzoki, Ali Akbar Mosallaie;Loghman, Abbas;Arani, Ali Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.497-517
    • /
    • 2015
  • In this study, nonlocal nonlinear buckling analysis of embedded polymeric temperature-dependent microplates resting on an elastic matrix as orthotropic temperature-dependent elastomeric medium is investigated. The microplate is reinforced by single-walled carbon nanotubes (SWCNTs) in which the equivalent material properties nanocomposite are estimated based on the rule of mixture. For the carbon-nanotube reinforced composite (CNTRC) plate, both cases of uniform distribution (UD) and functionally graded (FG) distribution patterns of SWCNT reinforcements are considered. The small size effects of microplate are considered based on Eringen's nonlocal theory. Based on orthotropic Mindlin plate theory along with von K$\acute{a}$rm$\acute{a}$n geometric nonlinearity and Hamilton's principle, the governing equations are derived. Generalized differential quadrature method (GDQM) is applied for obtaining the buckling load of system. The effects of different parameters such as nonlocal parameters, volume fractions of SWCNTs, distribution type of SWCNTs in polymer, elastomeric medium, aspect ratio, boundary condition, orientation of foundation orthtotropy direction and temperature are considered on the nonlinear buckling of the microplate. Results indicate that CNT distribution close to top and bottom are more efficient than those distributed nearby the mid-plane for increasing the buckling load.

Thermal characteristics of defective carbon nanotube-polymer nanocomposites

  • Unnikrishnan, V.U.;Reddy, J.N.;Banerjee, D.;Rostam-Abadi, F.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.4
    • /
    • pp.397-409
    • /
    • 2008
  • The interfacial thermal resistance of pristine and defective carbon nanotubes (CNTs) embedded in low-density polyethylene matrix is studied in this paper. Interface thermal resistance in nanosystems is one of the most important factors that lead to the large variation in thermal conductivities in literature and the novelty of this paper lies in the estimation of the interfacial thermal resistance for defective nanotubes-systems. Thermal properties of CNT nanostructures are estimated using molecular dynamics (MD) simulations and the simulations were carried out for various temperatures by rescaling the velocities of carbon atoms in the nanotube. This paper also deals with the mesoscale thermal conductivities of composite systems, using effective medium theories by considering the size effect in the form of interfacial thermal resistance and also using the conventional micromechanical methods like Hashin-Shtrikman bounds and Wakashima-Tsukamoto estimates.

Moth-eye 패턴이 형성된 고 투과성 전도성 폴리머 필름 제작

  • Min, Byeong-Hak;Jo, Jung-Yeon;Lee, Seong-Hwan;Han, Gang-Su;Lee, -Heon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.63.1-63.1
    • /
    • 2011
  • 현재 상용 중인 터치패널의 전도성 필름으로는 ITO가 주로 사용된다. 하지만, 디스플레이 기기의 수요 증가와 Indium의 고갈로 인한 ITO의 수요 공급 불균형으로 인한 원가 문제가 대두되고 있다. 이 때문에, Carbon nanotube (CNT), Graphene 등의 대체 투명 전도성 물질들이 연구 중에 있지만 투과율 및 저항 문제 등이 문제가 되고 있다. 본 연구에서는 투명 전도성 필름의 광 투과도 향상을 위하여, 자외선 경화 레진을 이용하여, 전도성 필름 상에 모스 아이 레진 패턴을 형성하는 실험을 진행하였다. 패턴이 형성된 이후에는 Scanning Electro Microscope를 통하여 패턴의 형성 유무를 관찰하였고, UV-vis와 4-point probe를 이용하여 투과도 및 저항을 측정하였다. 실험 결과 모스아이패턴을 필름에 패터닝 함으로써, 전체적으로 투과도가 증가된다는 것을 확인 할 수 있었으며, 투과도의 증가폭은 단면 패터닝보다는 양면 패터닝을 한 경우가 높았다. 그리고 저항 변화에 있어서는 패턴이 있는 부분의 경우 표면 잔여층으로 인하여 급격하게 증가하였지만, 전도면 반대편에 패터닝을 진행한 경우 거의 변화하지 않았다는 것을 확인할 수 있었다. 결과적으로, 본 연구를 통해 나노 임프린트 리소그래피를 통해 전도성 폴리머 필름 상부에 모스아이나노 구조물을 제작하였고, 이를 통해 기존의 전도성 폴리머 필름의 낮은 투과율을 향상시킬 수 있었다.

  • PDF

Effect of Fillers on Dispersion of Carbon Nanotubes in a Twin-Screw Extruder (이축압출기에서 카본나노튜브의 분산에 대한 충전제 효과)

  • Hong, Seung Soo;Shin, Ji Hee;Song, Kwon Bin;Lee, Kwang Hee
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.342-346
    • /
    • 2013
  • In this study, it was attempted to disperse carbon nanotubes (CNTs) in a polymer matrix using a twin-screw extruder which was good for dispersing fillers of micron sizes but not suitable for dispersing nanometer-sized materials. Improved dispersion of CNTs could be achieved by the addition of inorganic fillers with different geometrical shapes. An increase in the matrix viscosity provided a high shear stress on aggregated CNTs, leading to a good dispersion of CNTs. The presence of the inorganic fillers was supposed to suppress the re-aggregation of CNTs in the regions where a lower shear stress was applied. As a result, the CNTs dispersion was well stabilized.

Evaluating Cadmium Ion Removal in Aqueous Solutions and Cytotoxicity Evaluation of Carbon, Synthesized Layered Double Hydroxide, and Multi-wall Carbon Nanotube (활성탄, 합성 층상이중층 수산화물, 카본나노튜브를 이용한 수용액상의 카드뮴의 제거와 흡착제 독성 연구)

  • Kim, Tae-Gyung;Park, Bog-Soung;Jung, Yong-Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.2
    • /
    • pp.211-218
    • /
    • 2017
  • This experiment was carried out with the purpose of testing cadmium adsorption abilities of multi wall carbon nanotube (MWCNT), activated carbon, and synthesized layered double hydroxide (LDH). In the acidic condition, only MWCNT was effective for removing cadmium ion in the aqueous phase while other adsorbents rarely removed it. The MWCNT and cadmium ion adsorption reactions followed pseudo-first order kinetic. When the initial pH value was neutral (pH = 7), cadmium ion was rapidly removed by MWCNT and activated carbon in 4 hr (100% and 99.2%, respectively). Increasing adsorbent dosages affects the pH evolution and cadmium ion removal (0 to 99%). Cytotoxicity test showed that both MWCNT and LDH has low cytotoxic effects on three kind of human cells (A549, HS-294t, and HT-29).

Analysis of Sensing Mechanisms in a Gold-Decorated SWNT Network DNA Biosensor

  • Ahn, Jinhong;Kim, Seok Hyang;Lim, Jaeheung;Ko, Jung Woo;Park, Chan Hyeong;Park, Young June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.153-162
    • /
    • 2014
  • We show that carbon nanotube sensors with gold particles on the single-walled carbon nanotube (SWNT) network operate as Schottky barrier transistors, in which transistor action occurs primarily by varying the resistance of Au-SWNT junction rather than the channel conductance modulation. Transistor characteristics are calculated for the statistically simplified geometries, and the sensing mechanisms are analyzed by comparing the simulation results of the MOSFET model and Schottky junction model with the experimental data. We demonstrated that the semiconductor MOSFET effect cannot explain the experimental phenomena such as the very low limit of detection (LOD) and the logarithmic dependence of sensitivity to the DNA concentration. By building an asymmetric concentric-electrode model which consists of serially-connected segments of CNTFETs and Schottky diodes, we found that for a proper explanation of the experimental data, the work function shifts should be ~ 0.1 eV for 100 pM DNA concentration and ~ 0.4 eV for $100{\mu}M$.

Reliable Measurement Methodology of Wafer Bonding Strength in 3D Integration Process Using Atomic Force Microscopy (삼차원집적공정에서 원자현미경을 활용한 Wafer Bonding Strength 측정 방법의 신뢰성에 관한 연구)

  • Choi, Eunmi;Pyo, Sung Gyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.11-15
    • /
    • 2013
  • The wafer bonding process becomes a flexible approach to material and device integration. The bonding strength in 3-dimensional process is crucial factor in various interface bonding process such as silicon to silicon, silicon to metals such as oxides to adhesive intermediates. A measurement method of bonding strength was proposed by utilizing AFM applied CNT probe tip which indicated the relative simplicity in preparation of sample and to have merit capable to measure regardless type of films. Also, New Tool was utilized to measure of tip radius. The cleaned $SiO_2$-Si bonding strength of SPFM indicated 0.089 $J/m^2$, and the cleaning result by RCA 1($NH_4OH:H_2O:H_2O_2$) measured 0.044 $J/m^2$, indicated negligible tolerance which verified the possibility capable to measure accurate bonding strength. And it could be confirmed the effective bonding is possible through SPFM cleaning.

Electrical Characteristics of Carbon Nanotubes by Plasma and Microwave Surface Treatments

  • Cho, Sang-Jin;Shrestha, Shankar Prasad;Lee, Soon-Bo;Boo, Jin-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.905-907
    • /
    • 2014
  • The plasma and microwave surface treatments of carbon nanotubes that loaded on plastic substrates were carried out with expecting a change of carbon nanotube dispersion by increasing treatment time. The microwave treatment process was undergone by commercial microwave oven (800 W). The electrical property was measured by hall measurement and resistance was increased by increasing $O_2$ flow rate of plasma, suggesting an improvement of carbon nanotube dispersion and a possibility of controlling the resistances of carbon nanotubes by plasma surface treatment. The resistance was increased in both polyethylene terephthalate and polyimide substrates by increasing $O_2$ flow rate. Resistance changes only slightly with different $O_2$ flow treatment in measure rho for all polyimide samples. Sheet resistance is lowest in polyimide substrate not due to high carbon nanotube loading but due to tendency to remain in elongated structure. $O_2$ or $N_2$ plasma treatments on both polyethylene terephthalate and polyimide substrates lead to increase in sheet resistance.

A review: controlled synthesis of vertically aligned carbon nanotubes

  • Hahm, Myung-Gwan;Hashim, Daniel P.;Vajtai, Robert;Ajayan, Pulickel M.
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.185-193
    • /
    • 2011
  • Carbon nanotubes (CNTs) have developed into one of the most competitively researched nano-materials of this decade because of their structural uniqueness and excellent physical properties such as nanoscale one dimensionality, high aspect ratio, high mechanical strength, thermal conductivity and excellent electrical conductivity. Mass production and structure control of CNTs are key factors for a feasible CNT industry. Water and ethanol vapor enhance the catalytic activity for massive growth of vertically aligned CNTs. A shower system for gas flow improves the growth of vertically aligned single walled CNTs (SWCNTs) by controlling the gas flow direction. Delivery of gases from the top of the nanotubes enables direct and precise supply of carbon source and water vapor to the catalysts. High quality vertically aligned SWCNTs synthesized using plasma enhance the chemical vapor deposition technique on substrate with suitable metal catalyst particles. This review provides an introduction to the concept of the growth of vertically aligned SWCNTs and covers advanced topics on the controlled synthesis of vertically aligned SWCNTs.

Application of Carbon Nanotubes in Displays

  • Feng, T.;Sun, Z.;Zhang, Z.J.;Lin, L.F.;Ding, Hui.;Chen, Y.W.;Pan, L.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1529-1531
    • /
    • 2008
  • Since the discovery over a decade ago, carbon nanotubes (CNTs) have been attracting considerable attentions both from scientists and engineers. Because of the excellent field emission properties, such as high aspect ratio, extremely small diameter, and high emission current, CNTs become a potential candidate as field emitter for field emission display (FED) and lighting (FEL) as backlight for LCD. Due to the exceptional physical properties, such as superior thermal and electrical conductivities, as well as high stiffness and strength, the CNT-based composites can be as light-weight heat-sink or thermal spreader materials used for power electronic devices, such as power LED for general illumination. The CNTs for above applications will be reviewed, and related materials and devices will be demonstrated in this paper.

  • PDF