• 제목/요약/키워드: CNT addition

검색결과 165건 처리시간 0.019초

PVDF를 포함한 고분자 블렌드와 탄소섬유/탄소나노튜브를 이용한 복합재료의 특성 (Properties of Nanocomposites Based on Polymer Blend Containing PVDF, Carbon Fiber and Carbon Nanotube)

  • 김정호;손권상;이민호
    • 공업화학
    • /
    • 제25권1호
    • /
    • pp.14-19
    • /
    • 2014
  • 본 연구에서는 탄소섬유(carbon fiber, CF)와 탄소나노튜브(carbon nanotube, CNT)를 포함하는 PMMA/PVDF 및 PET/PVDF 블렌드 나노복합재료를 이축성형 압출기를 이용하여 용융삽입법으로 제조하였다. SEM을 이용하여 PMMA/PVDF/CF/CNT 나노복합재료의 모폴로지를 관찰한 결과, CNT가 matrix에서 효과적으로 분산되지 못한 반면 PET/PVDF/CF/CNT 나노복합재료에서는 CNT가 잘 분산된 것으로 관찰되었다. 상분리된 PET/PVDF 블렌드에서 CNT가 PET 상에 효과적으로 분산된 것으로 보였는데 이는 PET의 페닐렌기와 CNT 표면의 그라파이트 시트가 ${\pi}-{\pi}$ interaction에 의한 것으로 판단되었다. 또한 CF도 PET와의 계면 접착성이 우수한 것으로 나타났다. PET/PVDF/CF 나노복합재료의 전기전도도는 CNT를 첨가함으로써 증가하였으나 PMMA/PVDF/CF 나노복합재료에 CNT를 첨가한 경우 전기전도도가 향상되지 않았다. 모폴로지 관찰결과에서 CNT의 분산 정도는 전기전도도 물성 결과와 일치하였다. DSC 분석 결과, PET/PVDF/CF/CNT 나노복합재료에서는 결정화 온도가 증가하였는데, 이는 CF 및 CNT가 PET의 결정화를 촉진 시키는 조핵제 역할을 하기 때문인 것으로 보였다. 굴곡물성 결과, PET/PVDF/CF/CNT 나노복합재료에서 PET와 CF의 친화성이 우수하여 굴곡탄성률이 크게 증가하였다.

나노 ZnO:CNT를 이용한 후막 가스센서의 특성연구 (Characteristics of Thick Film Gas Sensors Using Nano ZnO:CNT)

  • 윤소진;유일
    • 한국재료학회지
    • /
    • 제24권8호
    • /
    • pp.413-416
    • /
    • 2014
  • The effects of an addition of CNT on the sensing properties of nano ZnO:CNT-based gas sensors were studied for $H_2S$ gas. The nano ZnO sensing materials were grown by a hydrothermal reaction method. The nano ZnO:CNT was prepared by ball-milling method. The weight range of the CNT addition on the ZnO surface was from 0 to 10%. The nano ZnO:CNT gas sensors were fabricated by a screen-printing method on alumina substrates. The structural and morphological properties of the ZnO:CNT sensing materials were investigated by XRD, EDS, and SEM. The XRD patterns revealed that nano ZnO:CNT powders with a wurtzite structure were grown with (1 0 0), (0 0 2), and (1 0 1) dominant peaks. The size of the ZnO was about 210 nm, as confirmed by SEM images. The sensitivity of the nano ZnO:CNT-based sensors was measured for 5 ppm of $H_2S$ gas at room temperature by comparing the resistance in air with that in target gases.

삭마 효과에 대한 CNT-페놀 나노복합재료의 미세구조 분석 (Microstructure and Ablation Performance of CNT-phenolic Nanocomposites)

  • 왕작가;권동준;박종규;이우일;박종만
    • Composites Research
    • /
    • 제26권5호
    • /
    • pp.309-314
    • /
    • 2013
  • 소량의 CNT 나노입자를 함유한 CNT-페놀 복합재료를 제조하여 삭마 효과를 확인하였다. CNT 함량을 0.1 wt%에서 0.3 wt%까지 증가시킴에 따른 인장, 압축 강도를 평가하고 삭마 저항성에 대한 차이를 분석하였다. 산소와 등유를 혼합하여 화염 발생시켜 재료의 삭마 효과를 평가하였다. FE-SEM을 이용하여 삭마 실험 이후 발생된 시편의 미세 구조 변화를 확인하였다. CNT 함유 정도에 따른 TGA 열분석을 시도하여 열적 안정성을 평가하였다. 0.3wt% CNT-페놀 복합재료가 일반 페놀 수지 및 0.1 wt% CNT-페놀 복합재료보다 삭마율이 낮았다. 삭마에 따른 재료 변화 메커니즘을 규명하기 위해 TGA 분석 결과와 FE-SEM을 이용한 미세 구조 결과를 분석하였다. 고열의 화염을 이용한 삭마 실험을 통해 시편 내부의 CNT 입자가 존재하는 미세구조를 확인할 수 있었다. 수지 내부에 균일하게 분산된 CNT 입자의 역할이 내삭마성을 증가시키는 결과를 확인하였다.

Effect of CNT Addition on the Hydriding and Dehydriding Rates of Mg-Ni-Fe2O3 Alloy

  • Song, Myoung Youp;Kwak, Young Jun;Lee, Byung-Soo;Park, Hye Ryoung;Kim, Byoung-Goan
    • 대한금속재료학회지
    • /
    • 제49권12호
    • /
    • pp.989-994
    • /
    • 2011
  • Samples with compositions of 80 wt% Mg-14 wt% Ni-6 wt% $Fe_2O_3$ (named $Mg-Ni-Fe_2O_3$), and 78 wt% Mg-14 wt% Ni-6 wt% $Fe_2O_3-2$ wt% CNT (named $Mg-Ni-Fe_2O_3-CNT$ ) were prepared by reactive mechanical grinding. Hydriding and dehydriding properties and effects of CNT addition on the hydriding and dehydriding rates of $Mg-Ni-Fe_2O_3$ were then investigated. Activation of the $Mg-14Ni-6Fe_2O_3$ sample was completed after three hydriding (under 12 bar $H_2$)-dehydriding (under 1.0 bar $H_2$) cycles at 573 K. The addition of CNT to the $Mg-14Ni-6Fe_2O_3$ sample made the activation process unnecessary, with a small decrease in the hydrogen-storage capacity.

분산법이 무전해 Ni-CNT 복합도금막 형성에 미치는 영향 (Effect of Dispersion Method on Formation of Electroless Ni-CNT Coatings)

  • 배규식
    • 반도체디스플레이기술학회지
    • /
    • 제13권3호
    • /
    • pp.51-55
    • /
    • 2014
  • Ni-CNT(Carbon Nanotubes) composite coating is often used for the surface treatment of mechanical/electronic devices to improve the properties of the Ni coating. For the Ni-CNT coating, the dispersion of CNT fibers is a critical process. In this study, ultrasonic treatment instead of the conventional ball milling was attempted as a dispersion method for the electroless Ni-CNT coating. SEM-EDX analysis was performed and contact angle, sheet resistance, and micro-hardness were measured. Results showed that the ultrasonic treatment was comparable to the ball milling, as a dispersion method, but the difference was negligible. However, combined ball milling and ultrasonic treatment(double treatment) showed much improved micro-hardness value, above 350Hv(close to the value obtained by the Ni-CNT electroplating). In addition, electroless Ni-CNT(double-treated) coatings formed on the thin Ni film deposited by the electroless plating(double coating) showed better mechanical properties. Thus, double treatment and double coating are suggested as an improved electroless Ni-CNT coating method.

폴리스티렌/다중벽 탄소나노튜브 나노복합재료의 물리적 분산 방법에 따른 물성 (Comparative Study of Physical Dispersion Method on Properties of Polystyrene/Multi-walled Carbon Nanotube Nanocomposites)

  • 강명환;염효열;나효열;이성재
    • 폴리머
    • /
    • 제37권4호
    • /
    • pp.526-532
    • /
    • 2013
  • 라텍스 기법으로 제조한 폴리스티렌(PS)/탄소나노튜브(CNT) 나노복합재료의 CNT 분산 방법에 따른 유변물성과 전기 전도도를 비교하였다. PS/CNT 나노복합재료는 PS 입자와 CNT를 분산시킨 후 동결건조하여 제조하였다. 본 연구에서는 화학적 개질시 나타나는 CNT의 고유 물성 저하를 방지하기 위하여 sodium dodecylsulfate(SDS)를 첨가하는 방법과 polyvinyl pyrrolidone(PVP)으로 CNT를 감싸는 방법의 물리적 분산법을 적용하였다. 라텍스 기법에 적용한 물리적 분산 방법은 CNT의 분산에 매우 효과적이었다. SDS를 첨가한 경우는 PVP로 감싼 CNT를 사용하여 제조한 경우에 비해 나노복합재료의 유변물성의 증가폭이 낮은데 이는 저분자량인 SDS를 첨가로 인해 매트릭스의 물성이 감소하기 때문이다. CNT를 SDS로 분산시킨 나노복합재료와 PVP로 감싼 CNT를 사용한 나노복합재료의 전기적 임계점은 각각 0.23과 0.90 wt%로 나타났다. PVP로 CNT를 감싼 경우가 전기 전도도 향상 효과가 낮은데 이는 감싸고 있는 절연성의 PVP가 CNT간의 전기적 연결을 억제하기 때문이다.

입자분산이 Ni-CNT 복합도금막의 특성에 미치는 영향 (Effect of Particle Dispersion on Physical Properties of Ni-CNT Composite Coatings)

  • 천영훈;배규식
    • 반도체디스플레이기술학회지
    • /
    • 제10권2호
    • /
    • pp.91-95
    • /
    • 2011
  • Ni-CNT(carbon nanotubes) composite coating is often used for the surface treatment of electronic/mechanical devices to improve the properties of the exisiting Ni electroplating. For this, the dispersion of CNT particle is a critical process. In this study, ball milling and additive called sodium dodecyl sulfate(SDS) are employed for dispersion. Electroplated Ni-CNT films were examined by SEM-EDX, AES, microhardness tester, 4-point probe and contact angle measurement to find the optimum dispersion conditions. Ni-CNT coatings formed by ball milling for 9 hrs and with addition of SDS 12 times of CNT contents showed the highest hardness, reasonable resistivity and non-stick characteristics.

분말시스압연법에 의한 CNT 강화 Al기 복합재료의 제조 및 평가 (Fabrication and Evaluation of Carbon Nanotube Reinforced Al Matrix Composite by a Powder-in-sheath Rolling Method)

  • 이성희;홍동민
    • 한국분말재료학회지
    • /
    • 제21권1호
    • /
    • pp.50-54
    • /
    • 2014
  • A powder-in-sheath rolling method was applied to a fabrication of a carbon nano tube (CNT) reinforced aluminum composite. A STS304 tube with an outer diameter of 34 mm and a wall thickness of 2 mm was used as a sheath material. A mixture of pure aluminum powders and CNTs with the volume contents of 1, 3, 5 vol was filled in the tube by tap filling and then processed to 73.5% height reduction by a rolling mill. The relative density of the CNT/Al composite fabricated by the powder-in-sheath rolling decreased slightly with increasing of CNTs content, but exhibited high value more than 98. The grain size of the aluminum matrix was largely decreased with addition of CNTs; it decreased from $24{\mu}m$ to $0.9{\mu}m$ by the addition of only 1 volCNT. The average hardness of the composites increased by approximately 3 times with the addition of CNTs, comparing to that of unreinforced pure aluminum. It is concluded that the powder-in-sheath rolling method is an effective process for fabrication of CNT reinforced Al matrix composites.

리튬이온전지 음극활물질 Li4Ti5O12의 그래핀/CNT 첨가에 따른 전기화학적 특성 (Electrochemical Performance of Li4Ti5O12 with Graphene/CNT Addition for Lithium Ion Battery)

  • 김상백;나병기
    • Korean Chemical Engineering Research
    • /
    • 제55권3호
    • /
    • pp.430-435
    • /
    • 2017
  • $Li_4Ti_5O_{12}$ (LTO)는 리튬이차전지용 음극활물질로써 충방전에 따른 체적변화가 매우 적고, 삽입과 탈리 반응에 따른 높은 가역성 때문에 수명 특성이 좋다는 장점을 가지고 있다. 본 연구에서는 LTO의 단점인 낮은 전기전도도를 보완하고자 전도성이 좋은 탄소계열 소재인 그래핀과 CNT를 첨가 하였다. LTO입자가 나노 크기이므로, 그래핀이 LTO표면에 위치하여 전도성 향상을 시키기 어렵다고 생각했다. 따라서 추가로 CNT를 첨가시켜 LTO입자와 그래핀 사이에 전도성 네트워크를 형성하여, 그래핀만 첨가하였을 때 보다 전도성이 향상되었다. 또한 탄소물질의 첨가 시점을 LTO합성 전후로 나누어, 각각의 용량 및 수명특성의 효율을 비교해 보았다.

탄소나노튜브(CNT)의 첨가에 따른 TiO2의 광촉매 특성 변화 연구 (Evaluation of TiO2 Photocatalytic Activity with Addition of Carbon Nanotube)

  • 여인철;강인철
    • 한국분말재료학회지
    • /
    • 제23권6호
    • /
    • pp.458-465
    • /
    • 2016
  • A $TiO_2$/CNT nanohybrid photocatalyst is synthesized via sol-gel route, with titanium (IV) isopropoxide and multi-walled carbon nanotubes (MWCNTs) as the starting materials. The microstructures and phase constitution of the nanohybrid $TiO_2$/CNT (0.005wt%) samples after calcination at $450^{\circ}C$, $550^{\circ}C$ and $650^{\circ}C$ in air are compared with those of pure $TiO_2$ using field-emission scanning electron microscopy and X-ray diffraction, respectively. In addition, the photocatalytic activity of the nanohybrid is compared with that of pure $TiO_2$ with regard to the degradation of methyl orange under visible light irradiation. The $TiO_2$/CNT composite exhibits a fast grain growth and phase transformation during calcination. The nanocomposite shows enhanced photocatalytic activity under visible light irradiation in comparison to pure $TiO_2$ owing to not only better adsorption capability of CNT but also effective electron transfer between $TiO_2$ and CNTs. However, the high calcination temperature of $650^{\circ}C$, regardless of addition of CNT, causes a decrease in photocatalytic activity because of grain growth and phase transformation to rutile. These results such as fast phase transformation to rutile and effective electron transfer are related to carbon doping into $TiO_2$.