DOI QR코드

DOI QR Code

Effect of CNT Addition on the Hydriding and Dehydriding Rates of Mg-Ni-Fe2O3 Alloy

  • Song, Myoung Youp (Division of Advanced Materials Engineering, Department of Hydrogen and Fuel Cells, Research Center of Advanced Materials Development, Engineering Research Institute, Chonbuk National University) ;
  • Kwak, Young Jun (Department of Materials Engineering, Graduate School, Chonbuk National University) ;
  • Lee, Byung-Soo (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Park, Hye Ryoung (School of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Byoung-Goan (Korea Energy Materials Ltd.)
  • Received : 2011.07.12
  • Published : 2011.12.25

Abstract

Samples with compositions of 80 wt% Mg-14 wt% Ni-6 wt% $Fe_2O_3$ (named $Mg-Ni-Fe_2O_3$), and 78 wt% Mg-14 wt% Ni-6 wt% $Fe_2O_3-2$ wt% CNT (named $Mg-Ni-Fe_2O_3-CNT$ ) were prepared by reactive mechanical grinding. Hydriding and dehydriding properties and effects of CNT addition on the hydriding and dehydriding rates of $Mg-Ni-Fe_2O_3$ were then investigated. Activation of the $Mg-14Ni-6Fe_2O_3$ sample was completed after three hydriding (under 12 bar $H_2$)-dehydriding (under 1.0 bar $H_2$) cycles at 573 K. The addition of CNT to the $Mg-14Ni-6Fe_2O_3$ sample made the activation process unnecessary, with a small decrease in the hydrogen-storage capacity.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology

References

  1. J. S. Han and K. D. Park, Kor. J. Met. Mater. 48, 1123 (2010).
  2. K. D. Park and J. S. Han, Kor. J. Met. Mater. 49, 945 (2011).
  3. J. J. Reilly and R. H. Wiswall, Inorg. Chem. 6, 2220 (1967). https://doi.org/10.1021/ic50058a020
  4. J. J. Reilly and R. H. Wiswall Jr, Inorg. Chem. 7, 2254 (1968). https://doi.org/10.1021/ic50069a016
  5. M. H. Mintz, Z. Gavra, and Z. Hadari, J. Inorg. Nucl. Chem. 40, 765 (1978). https://doi.org/10.1016/0022-1902(78)80147-X
  6. M. Pezat, A. Hbika, B. Darriet, and P. Hagenmuller, French Anvar Patent 78 203 82 (1978)
  7. M. Pezat, A. Hbika, B. Darriet, and P. Hagenmuller, Mater. Res. Bull. 14, 377 (1979). https://doi.org/10.1016/0025-5408(79)90103-X
  8. M. Pezat, B. Darriet, and P. Hagenmuller, J. Less-Common Met. 74, 427 (1980). https://doi.org/10.1016/0022-5088(80)90181-2
  9. Q. Wang, J. Wu, M. Au, L. Zhang, T. N. Veziro lu, and J. B. Taylor (Eds.), Proc. Fifth World Hydrogen Energy Conference (Hydrogen, Energy Progress V), vol. 3, p. 1279-1290, Toronto, Canada, Pergamon, New York, (1984).
  10. K. I. Kim and T. W. Hong, Kor. J. Met. Mater. 49, 264 (2011). https://doi.org/10.3365/KJMM.2011.49.3.264
  11. S. H. Hong, S. N. Kwon, and M. Y. Song, Kor. J. Met. Mater. 49, 298 (2011). https://doi.org/10.3365/KJMM.2011.49.4.298
  12. B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier, and P. Hagenmuller, Mater. Res. Bull. 11, 1441 (1976). https://doi.org/10.1016/0025-5408(76)90057-X
  13. F. G. Eisenberg, D. A. Zagnoli, and J. J. Sheridan III, J. Less-Common Met. 74, 323 (1980). https://doi.org/10.1016/0022-5088(80)90170-8
  14. M. Y. Song, J. Mater. Sci. 30, 1343 (1995). https://doi.org/10.1007/BF00356142
  15. M.Y. Song, E.I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, Int. J. Hydrogen Energy 10, 169 (1985). https://doi.org/10.1016/0360-3199(85)90024-2
  16. M.Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, J. Less-Common Met. 131, 71 (1987). https://doi.org/10.1016/0022-5088(87)90502-9
  17. M.Y. Song, Int. J. Hydrogen Energy 20, 221 (1995). https://doi.org/10.1016/0360-3199(94)E0024-S
  18. J.-L. Bobet, E. Akiba, Y. Nakamura, and B. Darriet, Int. J. Hydrogen Energy 25, 987 (2000). https://doi.org/10.1016/S0360-3199(00)00002-1
  19. J. Huot, M. L. Tremblay, and R. Schulz, J Alloys Compd. 356, 603 (2003).
  20. H. Imamura, M. Kusuhara, S. Minami, M. Matsumoto, K. Masanari, Y. Sakata, K. Itoh, and T. Fukunaga, Acta Materialia 51, 6407 (2003). https://doi.org/10.1016/j.actamat.2003.08.010
  21. C. Milanese, A. Girella, S. Garroni, G. Bruni, V. Berbenni, P. Matteazzi, and A. Marini, Int. J. Hydrogen Energy 35, 1285 (2010). https://doi.org/10.1016/j.ijhydene.2009.11.057
  22. H. Gasan, O. N. Celik, N. Aydinbeyli, Y. M. Yaman, Int. J. Hydrogen Energy, doi:10.1016/j.ijhydene.2011.05.086.
  23. M.Y. Song, I.H. Kwon, S.N. Kwon, C.G. Park, S.H. Hong, D.R. Mumm, and J.S. Bae, J. Alloys and Compounds 415, 266 (2006). https://doi.org/10.1016/j.jallcom.2005.08.002
  24. M. Y. Song, S. N. Kwon, D. R. Mumm, S. H. Baek, and S. H. Hong, Met. Mater. Int. 12, 525 (2006). https://doi.org/10.1007/BF03027754
  25. M. Y. Song, S. H. Baek, J.-L. Bobet, and S. H. Hong, Int. J. Hydrogen Energy 35, 10366 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.161