• Title/Summary/Keyword: CNR (contrast to noise ratio)

Search Result 178, Processing Time 0.023 seconds

Evaluation and Comparison of Contrast to Noise Ratio and Signal to Noise Ratio According to Change of Reconstruction on Breast PET/CT (Breast PET CT 영상 재구성 변화에 따른 대조도 대 잡음비와 신호 대 잡음비의 비교평가)

  • Lee, Jea-Young;Lee, Eul-Kyu;Kim, Ki-Won;Jeong, Hoi-Woun;Lyu, Kwang-Yeul;Park, Hoon-Hee;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.79-85
    • /
    • 2017
  • The purpose of this study was to measure contrast to noise ratio (CNR) and signal to noise ratio (SNR) according to change of reconstruction from region of interest (ROI) in breast positron emission tomography-computed tomography (PET-CT), and to analyze the CNR and SNR statically. We examined images of breast PET-CT of 100 patients in a University-affiliated hospital, Seoul, Korea. Each patient's image of breast PET-CT were calculated by using ImageJ. Differences of CNR and SNR among four reconstruction algorithms were tested by SPSS Statistics21 ANOVA test for there was statistical significance (p<0.05). We have analysis socio-demographical variables, CNR and SNR according to reconstruction images, 95% confidence according to CNR and SNR of reconstruction and difference in a mean of CNR and SNR. SNR results, with the quality of distributions in the order of PSF_TOF, Iterative and Iterative-TOF, FBP-TOF. CNR, with the quality of distributions in the order of PSF_TOF, Iterative and Iterative-TOF, FBP-TOF. CNR and SNR of PET-CT reconstruction methods of the breast would be useful to evaluate breast diseases.

Evaluation of Roadmap Image Quality by Parameter Change in Angiography (혈관조영검사에서 매개변수 변화에 따른 Roadmap 영상의 화질평가)

  • Kong, Chang gi;Song, Jong Nam;Han, Jae Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2020
  • The purpose of this study is to identify factors affecting picture quality in Roadmap images, which were studied by varying the dilution rate, collimation field and flow rate of contrast medium. For a quantitative evaluation of the quality of the picture, a 3mm vessel model Water Phantom was self-produced using acrylic, a roadmap image was acquired with a self-produced vascular model Water Phantom, and the SNR(Signal to Noise Ratio) and CNR (Contrast to Noise Ratio) were analyzed. CM:N/S In the study on the change of dilution rate, CM:N/S dilution rate changed to (100%~10%:100%), and the measurement of the roadmap image taken using the vascular model Water Phantom showed that the measurement value of SNR gradually decreased as the N/S dilution rate was increased, and the measurement of CNR was gradually reduced. It was confirmed that the higher the dilution rate of CM:N/S, the lower the SNR and CNR, and also significant image can be obtained at the dilution rate of CM:N/S (100%~70:30%). The study showed the value of SNR and CNR in Roadmap image was increased as the Collimation Field was narrowed to the center of the vascular phantom; the Collimation Field was narrowed to the center of the vessel model by 2cm intervals to 0cm through 12cm. To verify the relationship with Roadmap image and Flow Rate, volume of the autoinjector was kept constant at 15 and the flow rate was gradually increased 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. The value of SNR and CNR of images taken by using water Phantom gradually decreased as the Flow Rate increased, but at Flow Rate 9 and 10, the SNR and CNR value was increase. It was not possible to confirm the relationship with SNR and CNR by ROI mean value and Background mean value. It is considered that further study is needed to evaluate the correlation about Roadmap image and Flow Rate. In conclusion, as the dilution rate of N/S in contrast medium was increased, the value of SNR and CNR was decreased. The narrower the Collimation Field, the higher image quality by increasing value of SNR and CNR. However, it is not confirmed the relationship Roadmap image and Flow Rate. It is considered that appropriate contrast medium concentration to minimize the effects of kidney and proper Collimation Field to improve contrast of image and reduce exposure X-ray during procedure is needed.

The Variation of Tagging Contrast-to-Noise Ratio (CNR) of SPAMM Image by Modulation of Tagline Spacing

  • Kang, Won-Suk;Park, Byoung-Wook;Choe, Kyu-Ok;Lee, Sang-Ho;Soonil Hong;Haijo Jung;Kim, Hee-Joung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.360-362
    • /
    • 2002
  • Myocardial tagging technique such as spatial modulation of magnetization (SPAMM) allows the study of myocardial motion with high accuracy. Tagging contrast of such a tagging images can affect to the accuracy of the estimation of tag intersection in order to analyze the myocardial motion. Tagging contrast can be affected by tagline spacing. The aim of this study was to investigate the relationship between tagline spacing of SPAMM image and tagging contrast-to-noise ratio (CNR) experimentally. One healthy volunteer was undergone electrocardiographically triggered MR imaging with SPAMM-based tagging pulse sequence at a 1.5T MR scanner (Gyroscan Intera, Philips Medical System, Netherland). Horizontally modulated stripe patterns were imposed with a range from 3.6mm to 9.6mm of tagline spacing. Images of the left ventricle (LV) wall were acquired at the mid-ventricle level during cardiac cycle with FEEPI (TR/TE/FA=5.8/2.2/10). Tagging CNR for each image was calculated with a software which developed in our group. During contraction, tagging CNR was more rapidly decreased in case of short tagline spacing than in case of long tagline spacing. In the same heart phase, CNR was increased corresponding with tag line spacing. Especially, at the fully contracted heart phase, CNR was more rapidly increased than the other heart phases as a function of tagline spacing.

  • PDF

Radiation Dose and Image Quality of Low-dose Protocol in Chest CT: Comparison of Standard-dose Protocol (흉부 CT촬영에서 저선량 프로토콜의 선량과 화질: 표준선량 프로토콜과 비교)

  • Lee, Won-Jeong;Ahn, Bong-Seon;Park, Young-Sun
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.2
    • /
    • pp.84-89
    • /
    • 2012
  • The purpose of this study was to compare radiation dose and image quality between low-dose (LDP) and standard-dose protocol (SDP). LDP (120 kVp, 30 mAs, 2-mm thickness) and SDP (120 kVp, 180 mAs, 1.2-mm thickness) images obtained from 61 subjects were retrospectively evaluated at level of carina bifurcation, using multi-detector CT (Brilliance 16, Philips Medical Systems). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated at ascending aorta and infraspinatus muscle, from CT number and back-ground noise. Radiation dose from two protocols measured at 5-point using acrylic-phantom, and CT number and noise measured at 4-point using water-phantom. All statistical analysis were performed using SPSS 19.0 program. LDP images showed significantly more noise and a significantly lower SNR and CNR than did SDP images at ascending aorta and infraspinatus muscle. Noise, SNR and CNR were significantly correlated with body mass index (p<0.001). Radiation dose, SNR and CNR from phantom were significant differences between two protocols. LDP showed a significant reduction of radiation dose with a significant change in SNR and CNR compared with SDP. Therefore, exposure dose on LDP in clinical applications needs resetting highly more considering image quality.

Virtual Non-Contrast Computer Tomography (CT) with Spectral CT as an Alternative to Conventional Unenhanced CT in the Assessment of Gastric Cancer

  • Tian, Shi-Feng;Liu, Ai-Lian;Wang, He-Qing;Liu, Jing-Hong;Sun, Mei-Yu;Liu, Yi-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2521-2526
    • /
    • 2015
  • Objective: The purpose of this study was to evaluate computed tomography (CT) virtual non-contrast (VNC) spectral imaging for gastric carcinoma. Materials and Methods: Fifty-two patients with histologically proven gastric carcinomas underwent gemstone spectral imaging (GSI) including non-contrast and contrast-enhanced hepatic arterial, portal venous, and equilibrium phase acquisitions prior to surgery. VNC arterial phase (VNCa), VNC venous phase (VNCv), and VNC equilibrium phase (VNCe) images were obtained by subtracting iodine from iodine/water images. Images were analyzed with respect to image quality, gastric carcinoma-intragastric water contrast-to-noise ratio (CNR), gastric carcinoma-perigastric fat CNR, serosal invasion, and enlarged lymph nodes around the lesions. Results: Carcinoma-water CNR values were significantly higher in VNCa, VNCv, and VNCe images than in normal CT images (2.72, 2.60, 2.61, respectively, vs 2.35, $p{\leq}0.008$). Carcinoma-perigastric fat CNR values were significantly lower in VNCa, VNCv, and VNCe images than in normal CT images (7.63, 7.49, 7.32, respectively, vs 8.48, p< 0.001). There were no significant differences of carcinoma-water CNR and carcinoma-perigastric fat CNR among VNCa, VNCv, and VNCe images. There was no difference in the determination of invasion or enlarged lymph nodes between normal CT and VNCa images. Conclusions: VNC arterial phase images may be a surrogate for conventional non-contrast CT images in gastric carcinoma evaluation.

Virtual Monochromatic Image Quality from Dual-Layer Dual-Energy Computed Tomography for Detecting Brain Tumors

  • Shota Tanoue;Takeshi Nakaura;Yasunori Nagayama;Hiroyuki Uetani;Osamu Ikeda;Yasuyuki Yamashita
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.951-958
    • /
    • 2021
  • Objective: To evaluate the usefulness of virtual monochromatic images (VMIs) obtained using dual-layer dual-energy CT (DL-DECT) for evaluating brain tumors. Materials and Methods: This retrospective study included 32 patients with brain tumors who had undergone non-contrast head CT using DL-DECT. Among them, 15 had glioblastoma (GBM), 7 had malignant lymphoma, 5 had high-grade glioma other than GBM, 3 had low-grade glioma, and 2 had metastatic tumors. Conventional polychromatic images and VMIs (40-200 keV at 10 keV intervals) were generated. We compared CT attenuation, image noise, contrast, and contrast-to-noise ratio (CNR) between tumor and white matter (WM) or grey matter (GM) between VMIs showing the highest CNR (optimized VMI) and conventional CT images using the paired t test. Two radiologists subjectively assessed the contrast, margin, noise, artifact, and diagnostic confidence of optimized VMIs and conventional images on a 4-point scale. Results: The image noise of VMIs at all energy levels tested was significantly lower than that of conventional CT images (p < 0.05). The 40-keV VMIs yielded the best CNR. Furthermore, both contrast and CNR between the tumor and WM were significantly higher in the 40 keV images than in the conventional CT images (p < 0.001); however, the contrast and CNR between tumor and GM were not significantly different (p = 0.47 and p = 0.31, respectively). The subjective scores assigned to contrast, margin, and diagnostic confidence were significantly higher for 40 keV images than for conventional CT images (p < 0.01). Conclusion: In head CT for patients with brain tumors, compared with conventional CT images, 40 keV VMIs from DL-DECT yielded superior tumor contrast and diagnostic confidence, especially for brain tumors located in the WM.

Dose Reduction According to the Exposure Condition in Intervention Procedure : Focus on the Change of Dose Area and Image Quality (인터벤션 시 방사선조사 조건에 따른 선량감소 : 면적선량과 영상화질 변화를 중심으로)

  • Hwang, Jun-Ho;Jung, Ku-Min;Kim, Hyun-Soo;Kang, Byung-Sam;Lee, Kyung-Bae
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.393-400
    • /
    • 2017
  • The purpose of this study is to suggest a method to reduce the dose by Analyzing the dose area product (DAP) and image quality according to the change of tube current using NEMA Phantom. The spatial resolution and low contrast resolution were used as evaluation criteria in addition to signal to noise ratio (SNR) and contrast to noise ratio (CNR), which are important image quality parameters of intervention. Tube voltage was fixed at 80 kVp and the amount of tube current was changed to 20, 30, 40, and 50 mAs, and the dose area product and image quality were compared and analyzed. As a result, the dose area product increased from $1066mGycm^2$ to $6160mGycm^2$ to 6 times as the condition increased, while the spatial resolution and low contrast resolution were higher than 20 mAs and 30 mAs, Spatial resolution and low contrast resolution were observed below the evaluation criteria. In addition, the SNR and CNR increased up to 30 mAs, slightly increased at 40 mAs, but not significantly different from the previous one, and decreased at 50 mAs. As a result, the exposure dose significantly increased due to overexposure of the test conditions and the image quality deteriorated in all areas of spatial resolution, low contrast resolution, SNR and CNR.

The Evaluation of Image Quality According to the Change of Reconstruction Algorithm of CT Images (재구성 알고리즘 변화에 따른 CT 영상의 화질 평가)

  • Han, Dong-Kyoon;Park, Kun-Jin;Ko, Shin-Kwan
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.2
    • /
    • pp.127-132
    • /
    • 2010
  • In this study, the correlation among the changes of Modulation Transfer Function(MTF) in the noise and high-contrast resolution and the change of Contrast to noise ratio(CNR) in the low-contrast resolution will be examined to investigate the estimation of image quality according to the type of algorithms. The image data obtained by scanning American Association of Physicists in Medicine(AAPM) phantom was applied to each algorithm and the exposure condition of 120 kVp, 250 mAs, and then the CT number and noise were measured. The MTF curved line of the high-contrast resolution was calculated with Point Spread Function(PSF) by using the analysis program by Philips, resulting in 0.5 MTF, 0.1 MTF and 0.02 MTF respectively. The low-contrast resolution was calculated with CNR and the uniformity was measured to each algorithm. Since the measurement value for the uniformity of the equipment was below ${\pm}$ 5 HU, which is the criterion figure, it was found to belong to the normal range. As the algorithm got closer from soft to edge, the standard deviation of CT number increased, which indicates that the noise increased as well. As for MTF, 0.5 MTF, 0.1 MTF and 0.02 MTF were all sharp algorithms, and as the algorithm got closer from soft to edge, it was possible to distinguish more clearly with the naked eye. On the other hand, CNR gradually decreased, because the difference between the contrast hole CT number and the acrylic CT number was the same while the noise of hole increased.

  • PDF

Value of Echo-Planar Imaging and MRI Dynamic Study in Differentiation Liver Diseases (간 질환 감별에 있이 MR영상의 역동적 검사와 EPI의 유용성)

  • Park, Byung-Rae
    • Journal of radiological science and technology
    • /
    • v.20 no.2
    • /
    • pp.73-78
    • /
    • 1997
  • The goal of this paper is that we know the usefulness of echo-planar imaging(EPI) for discriminate between hepatocellular carcinoma(HCC) and hemangioma. We get a time signal intensity curve for liver diseases from the dynamic contrast enhancement images and compared and analyze both the contrast ratio(CR) and the contrast to noise ratio(CNR) using echo planar imaging. The obtained results are follows : 1. Hepatocellular carcinoma was shown the best contrast after about 20 seconds when Is the earlist time in the main artery, and then reduced. The center where is disease was shown the characteristic that the best contrast is appeared after about 35-45 seconds and then slowly reduced. Liver parenchyma was shown the best contrast and reduced after 60 seconds. 2. The peripheral nodular of hemangioma was shown the better contrast soon. On the other hend, the contrast of center where is disease started to increase after 60 seconds and was equal to that of liver parenchyma. Increasing of the contrast continued after. 3. Turbo SE technic was used, the average of CR for hepatocellular carcinoma was $36.7{\pm}1.2$ and the average of CNR was $2.4{\pm}3.2$, while the average of CNR for hemangioma was $54.9{\pm}1.0$ and the average of CNR was $9.7{\pm}1.3$. 4. EPI technic was used, the average of CR for hepatocellular carcinoma was $47.8{\pm}1.2$ and the average of CNR was $3.4{\pm}2.1$, while the average of CNR for hemangioma was $75.7{\pm}2.2$ and the average of CNR was $9.5{\pm}1.1$. According to above we can find that hemangioma is more bright than hepatocellular carcinoma and the difference of brightness between hepatocellular carcinoma and hemangioma is useful sequence.

  • PDF

Comparison Study on CNR and SNR of Thoracic Spine Lateral Radiography (흉추 측면검사 영상의 CNR과 SNR 측정의 비교 연구)

  • Kim, Ki-Won;Min, Jung-Whan;Lyu, Kwang-Yeul;Kim, Jung-Min;Jeong, Hoi-Woun;Lee, Joo-Ah;Jung, Jae-Hong;Sung, Dong-Chan;Park, Soon-Cheol
    • Journal of radiological science and technology
    • /
    • v.36 no.4
    • /
    • pp.273-280
    • /
    • 2013
  • This study was proven for the T-spine breathing technique in lateral projection, using computer radiography (CR), charge coupled device (CCD), indirect digital radiography (IDR) and direct digital radiography (DDR). All images were evaluated and compared with CNR and SNR measured with the mean pixels and the standard deviation as setting ROI of spinous process, pedicle, vertebral body, intervertebral foramen and intervertebral disk using Image J. In experiment results of 4 type detectors, T-spine breathing technique was indicated as excellent in ROI of spinous process, pedicle, vertebral body, intervertebral foramen and intervertebral disk. As T-spine breathing technique indicated excellent images compared to the existing T-spine lateral radiography, this method would be useful for elderly patients who have difficulty in deep exhalation. This study was indicated the application possibility of T-spine breathing technique by presenting contrast to noise ratio (CNR) and signal to noise ratio (SNR) with quantitative value in 4 type detectors.