• 제목/요약/키워드: CNN-LSTM hybrid

검색결과 29건 처리시간 0.027초

Text Classification on Social Network Platforms Based on Deep Learning Models

  • YA, Chen;Tan, Juan;Hoekyung, Jung
    • Journal of information and communication convergence engineering
    • /
    • 제21권1호
    • /
    • pp.9-16
    • /
    • 2023
  • The natural language on social network platforms has a certain front-to-back dependency in structure, and the direct conversion of Chinese text into a vector makes the dimensionality very high, thereby resulting in the low accuracy of existing text classification methods. To this end, this study establishes a deep learning model that combines a big data ultra-deep convolutional neural network (UDCNN) and long short-term memory network (LSTM). The deep structure of UDCNN is used to extract the features of text vector classification. The LSTM stores historical information to extract the context dependency of long texts, and word embedding is introduced to convert the text into low-dimensional vectors. Experiments are conducted on the social network platforms Sogou corpus and the University HowNet Chinese corpus. The research results show that compared with CNN + rand, LSTM, and other models, the neural network deep learning hybrid model can effectively improve the accuracy of text classification.

Enhancing Wind Speed and Wind Power Forecasting Using Shape-Wise Feature Engineering: A Novel Approach for Improved Accuracy and Robustness

  • Mulomba Mukendi Christian;Yun Seon Kim;Hyebong Choi;Jaeyoung Lee;SongHee You
    • International Journal of Advanced Culture Technology
    • /
    • 제11권4호
    • /
    • pp.393-405
    • /
    • 2023
  • Accurate prediction of wind speed and power is vital for enhancing the efficiency of wind energy systems. Numerous solutions have been implemented to date, demonstrating their potential to improve forecasting. Among these, deep learning is perceived as a revolutionary approach in the field. However, despite their effectiveness, the noise present in the collected data remains a significant challenge. This noise has the potential to diminish the performance of these algorithms, leading to inaccurate predictions. In response to this, this study explores a novel feature engineering approach. This approach involves altering the data input shape in both Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and Autoregressive models for various forecasting horizons. The results reveal substantial enhancements in model resilience against noise resulting from step increases in data. The approach could achieve an impressive 83% accuracy in predicting unseen data up to the 24th steps. Furthermore, this method consistently provides high accuracy for short, mid, and long-term forecasts, outperforming the performance of individual models. These findings pave the way for further research on noise reduction strategies at different forecasting horizons through shape-wise feature engineering.

A Systems Engineering Approach for Predicting NPP Response under Steam Generator Tube Rupture Conditions using Machine Learning

  • Tran Canh Hai, Nguyen;Aya, Diab
    • 시스템엔지니어링학술지
    • /
    • 제18권2호
    • /
    • pp.94-107
    • /
    • 2022
  • Accidents prevention and mitigation is the highest priority of nuclear power plant (NPP) operation, particularly in the aftermath of the Fukushima Daiichi accident, which has reignited public anxieties and skepticism regarding nuclear energy usage. To deal with accident scenarios more effectively, operators must have ample and precise information about key safety parameters as well as their future trajectories. This work investigates the potential of machine learning in forecasting NPP response in real-time to provide an additional validation method and help reduce human error, especially in accident situations where operators are under a lot of stress. First, a base-case SGTR simulation is carried out by the best-estimate code RELAP5/MOD3.4 to confirm the validity of the model against results reported in the APR1400 Design Control Document (DCD). Then, uncertainty quantification is performed by coupling RELAP5/MOD3.4 and the statistical tool DAKOTA to generate a large enough dataset for the construction and training of neural-based machine learning (ML) models, namely LSTM, GRU, and hybrid CNN-LSTM. Finally, the accuracy and reliability of these models in forecasting system response are tested by their performance on fresh data. To facilitate and oversee the process of developing the ML models, a Systems Engineering (SE) methodology is used to ensure that the work is consistently in line with the originating mission statement and that the findings obtained at each subsequent phase are valid.

GAN 오버샘플링 기법과 CNN-BLSTM 결합 모델을 이용한 부정맥 분류 (Arrhythmia Classification using GAN-based Over-Sampling Method and Combination Model of CNN-BLSTM)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제26권10호
    • /
    • pp.1490-1499
    • /
    • 2022
  • 부정맥이란 심장이 불규칙한 리듬이나 비정상적인 심박동수를 갖는 것을 말하며, 뇌졸중, 심정지 등을 유발하거나 사망에도 이를 수 있는 만큼, 조기 진단과 관리가 무엇보다 중요하다. 본 연구에서는 심전도 신호의 QRS 특징 추출에 적합한 CNN과 기존 LSTM의 직전 패턴의 수렴 한계를 해결할 수 있는 BLSTM을 연결한 CNN-BLSTM 결합 모델을 이용한 부정맥 분류 방법을 제안한다. 이를 위해 먼저 전처리 과정을 통해 잡음을 제거한 심전도 신호에서 QRS 특징점을 검출하고 단일 비트 세그먼트를 추출하였다. 이때 데이터의 불균형 문제를 해결하기 위해 GAN 오버샘플링 기법을 적용하였다. 이 후 합성곱 계층을 통해 부정맥 신호의 패턴을 정밀하게 추출하도록 구성하고 이를 BLSTM의 입력으로 사용한 후 매개변수를 학습시키고 검증 데이터로 학습 모델을 평가한 후 부정맥 분류의 정확도를 확인하였다. 제안한 방법의 우수성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스를 이용하여 분류의 정확도, 정밀도, 재현율, F1-score를 비교하였다. 성능평가 결과 각각 99.30%, 98.70%, 97.50%, 98.06%로 우수한 분류율을 나타내는 것을 확인할 수 있었다.

Development of a Hybrid Deep-Learning Model for the Human Activity Recognition based on the Wristband Accelerometer Signals

  • Jeong, Seungmin;Oh, Dongik
    • 인터넷정보학회논문지
    • /
    • 제22권3호
    • /
    • pp.9-16
    • /
    • 2021
  • This study aims to develop a human activity recognition (HAR) system as a Deep-Learning (DL) classification model, distinguishing various human activities. We solely rely on the signals from a wristband accelerometer worn by a person for the user's convenience. 3-axis sequential acceleration signal data are gathered within a predefined time-window-slice, and they are used as input to the classification system. We are particularly interested in developing a Deep-Learning model that can outperform conventional machine learning classification performance. A total of 13 activities based on the laboratory experiments' data are used for the initial performance comparison. We have improved classification performance using the Convolutional Neural Network (CNN) combined with an auto-encoder feature reduction and parameter tuning. With various publically available HAR datasets, we could also achieve significant improvement in HAR classification. Our CNN model is also compared against Recurrent-Neural-Network(RNN) with Long Short-Term Memory(LSTM) to demonstrate its superiority. Noticeably, our model could distinguish both general activities and near-identical activities such as sitting down on the chair and floor, with almost perfect classification accuracy.

CTC를 적용한 CRNN 기반 한국어 음소인식 모델 연구 (CRNN-Based Korean Phoneme Recognition Model with CTC Algorithm)

  • 홍윤석;기경서;권가진
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권3호
    • /
    • pp.115-122
    • /
    • 2019
  • 지금까지의 한국어 음소 인식에는 은닉 마르코프-가우시안 믹스쳐 모델(HMM-GMM)이나 인공신경망-HMM을 결합한 하이브리드 시스템이 주로 사용되어 왔다. 하지만 이 방법은 성능 개선 여지가 적으며, 전문가에 의해 제작된 강제정렬(force-alignment) 코퍼스 없이는 학습이 불가능하다는 단점이 있다. 이 모델의 문제로 인해 타 언어를 대상으로 한 음소 인식 연구에서는 이 단점을 보완하기 위해 순환 신경망(RNN) 계열 구조와 Connectionist Temporal Classification(CTC) 알고리즘을 결합한 신경망 기반 음소 인식 모델이 연구된 바 있다. 그러나 RNN 계열 모델을 학습시키기 위해 많은 음성 말뭉치가 필요하고 구조가 복잡해질 경우 학습이 까다로워, 정제된 말뭉치가 부족하고 기반 연구가 비교적 부족한 한국어의 경우 사용에 제약이 있었다. 이에 본 연구는 강제정렬이 불필요한 CTC 알고리즘을 도입하되, RNN에 비해 더 학습 속도가 빠르고 더 적은 말뭉치로도 학습이 가능한 합성곱 신경망(CNN)을 기반으로 한국어 음소 인식 모델을 구축하여 보고자 시도하였다. 총 2가지의 비교 실험을 통해 본 연구에서는 한국어에 존재하는 49가지의 음소를 판별하는 음소 인식기 모델을 제작하였으며, 실험 결과 최종적으로 선정된 음소 인식 모델은 CNN과 3층의 Bidirectional LSTM을 결합한 구조로, 이 모델의 최종 PER(Phoneme Error Rate)은 3.26으로 나타났다. 이는 한국어 음소 인식 분야에서 보고된 기존 선행 연구들의 PER인 10~12와 비교하면 상당한 성능 향상이라고 할 수 있다.

BERT 기반 감성분석을 이용한 추천시스템 (Recommender system using BERT sentiment analysis)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.1-15
    • /
    • 2021
  • 추천시스템은 사용자의 기호를 파악하여 물품 구매 결정을 도와주는 역할을 할 뿐만 아니라, 비즈니스 전략의 관점에서도 중요한 역할을 하기에 많은 기업과 기관에서 관심을 갖고 있다. 최근에는 다양한 추천시스템 연구 중에서도 NLP와 딥러닝 등을 결합한 하이브리드 추천시스템 연구가 증가하고 있다. NLP를 이용한 감성분석은 사용자 리뷰 데이터가 증가함에 따라 2000년대 중반부터 활용되기 시작하였지만, 기계학습 기반 텍스트 분류를 통해서는 텍스트의 특성을 완전히 고려하기 어렵기 때문에 리뷰의 정보를 식별하기 어려운 단점을 갖고 있다. 본 연구에서는 기계학습의 단점을 보완하기 위하여 BERT 기반 감성분석을 활용한 추천시스템을 제안하고자 한다. 비교 모형은 Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units)를 기반으로 하는 추천 모형이며, 실제 데이터에 대한 분석 결과, BERT를 기반으로 하는 추천시스템의 성과가 가장 우수한 것으로 나타났다.

기계학습 기반 알츠하이머성 치매의 다중 분류에서 EEG-fNIRS 혼성화 기법 (An EEG-fNIRS Hybridization Technique in the Multi-class Classification of Alzheimer's Disease Facilitated by Machine Learning)

  • 호티키우칸;김인기;전영훈;송종인;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.305-307
    • /
    • 2021
  • Alzheimer's Disease (AD) is a cognitive disorder characterized by memory impairment that can be assessed at early stages based on administering clinical tests. However, the AD pathophysiological mechanism is still poorly understood due to the difficulty of distinguishing different levels of AD severity, even using a variety of brain modalities. Therefore, in this study, we present a hybrid EEG-fNIRS modalities to compensate for each other's weaknesses with the help of Machine Learning (ML) techniques for classifying four subject groups, including healthy controls (HC) and three distinguishable groups of AD levels. A concurrent EEF-fNIRS setup was used to record the data from 41 subjects during Oddball and 1-back tasks. We employed both a traditional neural network (NN) and a CNN-LSTM hybrid model for fNIRS and EEG, respectively. The final prediction was then obtained by using majority voting of those models. Classification results indicated that the hybrid EEG-fNIRS feature set achieved a higher accuracy (71.4%) by combining their complementary properties, compared to using EEG (67.9%) or fNIRS alone (68.9%). These findings demonstrate the potential of an EEG-fNIRS hybridization technique coupled with ML-based approaches for further AD studies.

  • PDF

Exploiting Neural Network for Temporal Multi-variate Air Quality and Pollutant Prediction

  • Khan, Muneeb A.;Kim, Hyun-chul;Park, Heemin
    • 한국멀티미디어학회논문지
    • /
    • 제25권2호
    • /
    • pp.440-449
    • /
    • 2022
  • In recent years, the air pollution and Air Quality Index (AQI) has been a pivotal point for researchers due to its effect on human health. Various research has been done in predicting the AQI but most of these studies, either lack dense temporal data or cover one or two air pollutant elements. In this paper, a hybrid Convolutional Neural approach integrated with recurrent neural network architecture (CNN-LSTM), is presented to find air pollution inference using a multivariate air pollutant elements dataset. The aim of this research is to design a robust and real-time air pollutant forecasting system by exploiting a neural network. The proposed approach is implemented on a 24-month dataset from Seoul, Republic of Korea. The predicted results are cross-validated with the real dataset and compared with the state-of-the-art techniques to evaluate its robustness and performance. The proposed model outperforms SVM, SVM-Polynomial, ANN, and RF models with 60.17%, 68.99%, 14.6%, and 6.29%, respectively. The model performs SVM and SVM-Polynomial in predicting O3 by 78.04% and 83.79%, respectively. Overall performance of the model is measured in terms of Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and the Root Mean Square Error (RMSE).