• 제목/요약/키워드: CNN deep learning methods

검색결과 273건 처리시간 0.027초

Bioimage Analyses Using Artificial Intelligence and Future Ecological Research and Education Prospects: A Case Study of the Cichlid Fishes from Lake Malawi Using Deep Learning

  • Joo, Deokjin;You, Jungmin;Won, Yong-Jin
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제3권2호
    • /
    • pp.67-72
    • /
    • 2022
  • Ecological research relies on the interpretation of large amounts of visual data obtained from extensive wildlife surveys, but such large-scale image interpretation is costly and time-consuming. Using an artificial intelligence (AI) machine learning model, especially convolution neural networks (CNN), it is possible to streamline these manual tasks on image information and to protect wildlife and record and predict behavior. Ecological research using deep-learning-based object recognition technology includes various research purposes such as identifying, detecting, and identifying species of wild animals, and identification of the location of poachers in real-time. These advances in the application of AI technology can enable efficient management of endangered wildlife, animal detection in various environments, and real-time analysis of image information collected by unmanned aerial vehicles. Furthermore, the need for school education and social use on biodiversity and environmental issues using AI is raised. School education and citizen science related to ecological activities using AI technology can enhance environmental awareness, and strengthen more knowledge and problem-solving skills in science and research processes. Under these prospects, in this paper, we compare the results of our early 2013 study, which automatically identified African cichlid fish species using photographic data of them, with the results of reanalysis by CNN deep learning method. By using PyTorch and PyTorch Lightning frameworks, we achieve an accuracy of 82.54% and an F1-score of 0.77 with minimal programming and data preprocessing effort. This is a significant improvement over the previous our machine learning methods, which required heavy feature engineering costs and had 78% accuracy.

진화연산 기반 CNN 필터 축소 (Evolutionary Computation Based CNN Filter Reduction)

  • 서기성
    • 전기학회논문지
    • /
    • 제67권12호
    • /
    • pp.1665-1670
    • /
    • 2018
  • A convolutional neural network (CNN), which is one of the deep learning models, has been very successful in a variety of computer vision tasks. Filters of a CNN are automatically generated, however, they can be further optimized since there exist the possibility of existing redundant and less important features. Therefore, the aim of this paper is a filter reduction to accelerate and compress CNN models. Evolutionary algorithms is adopted to remove the unnecessary filters in order to minimize the parameters of CNN networks while maintaining a good performance of classification. We demonstrate the proposed filter reduction methods performing experiments on CIFAR10 data based on the classification performance. The comparison for three approaches is analysed and the outlook for the potential next steps is suggested.

압축된 영상 복원을 위한 양자화된 CNN 기반 초해상화 기법 (Quantized CNN-based Super-Resolution Method for Compressed Image Reconstruction)

  • 김용우;이종환
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.71-76
    • /
    • 2020
  • In this paper, we propose a super-resolution method that reconstructs compressed low-resolution images into high-resolution images. We propose a CNN model with a small number of parameters, and even if quantization is applied to the proposed model, super-resolution can be implemented without deteriorating the image quality. To further improve the quality of the compressed low-resolution image, a new degradation model was proposed instead of the existing bicubic degradation model. The proposed degradation model is used only in the training process and can be applied by changing only the parameter values to the original CNN model. In the super-resolution image applying the proposed degradation model, visual artifacts caused by image compression were effectively removed. As a result, our proposed method generates higher PSNR values at compressed images and shows better visual quality, compared to conventional CNN-based SR methods.

Super-Resolution을 위한 Deconvolution 적용 고속 컨볼루션 뉴럴 네트워크 (Fast Very Deep Convolutional Neural Network with Deconvolution for Super-Resolution)

  • 이동현;이호성;이규중;이혁재
    • 한국멀티미디어학회논문지
    • /
    • 제20권11호
    • /
    • pp.1750-1758
    • /
    • 2017
  • In super-resolution, various methods with Convolutional Neural Network(CNN) have recently been proposed. CNN based methods provide much higher image quality than conventional methods. Especially, VDSR outperforms other CNN based methods in terms of image quality. However, it requires a high computational complexity which prevents real-time processing. In this paper, the method to apply a deconvolution layer to VDSR is proposed to reduce computational complexity. Compared to original VDSR, the proposed method achieves the 4.46 times speed-up and its degradation in image quality is less than -0.1 dB which is negligible.

픽셀 데이터를 이용한 강화 학습 알고리즘 적용에 관한 연구 (A Study on Application of Reinforcement Learning Algorithm Using Pixel Data)

  • 문새마로;최용락
    • 한국IT서비스학회지
    • /
    • 제15권4호
    • /
    • pp.85-95
    • /
    • 2016
  • Recently, deep learning and machine learning have attracted considerable attention and many supporting frameworks appeared. In artificial intelligence field, a large body of research is underway to apply the relevant knowledge for complex problem-solving, necessitating the application of various learning algorithms and training methods to artificial intelligence systems. In addition, there is a dearth of performance evaluation of decision making agents. The decision making agent that can find optimal solutions by using reinforcement learning methods designed through this research can collect raw pixel data observed from dynamic environments and make decisions by itself based on the data. The decision making agent uses convolutional neural networks to classify situations it confronts, and the data observed from the environment undergoes preprocessing before being used. This research represents how the convolutional neural networks and the decision making agent are configured, analyzes learning performance through a value-based algorithm and a policy-based algorithm : a Deep Q-Networks and a Policy Gradient, sets forth their differences and demonstrates how the convolutional neural networks affect entire learning performance when using pixel data. This research is expected to contribute to the improvement of artificial intelligence systems which can efficiently find optimal solutions by using features extracted from raw pixel data.

스펙트로그램 이미지를 이용한 CNN 기반 자동화 기계 고장 진단 기법 (CNN-based Automatic Machine Fault Diagnosis Method Using Spectrogram Images)

  • 강경원;이경민
    • 융합신호처리학회논문지
    • /
    • 제21권3호
    • /
    • pp.121-126
    • /
    • 2020
  • 소리 기반 기계 고장 진단은 기계의 음향 방출 신호에서 비정상적인 소리를 자동으로 감지하는 것이다. 수학적 모델을 사용하는 기존의 방법은 기계 시스템의 복잡성과 잡음과 같은 비선형 요인이 존재하기 때문에 기계 고장 진단이 어려웠다. 따라서 기계 고장 진단의 문제를 딥러닝 기반 이미지 분류 문제로 해결하고자 한다. 본 논문에서 스펙트로그램 이미지를 이용한 CNN 기반 자동화 기계 고장 진단 기법을 제안한다. 제안한 방법은 기계의 결함 시 발생하는 주파수상의 특징 벡터를 효과적으로 추출하기 위해 STFT를 사용하였으며, STFT에 의해 검출된 특징 벡터들은 스펙트로그램 이미지로 변환하여 CNN을 이용해 기계의 상태별로 분류한다. 그 결과는 제안한 방법은 효과적으로 결함을 탐지할 뿐만 아니라 소리 기반의 다양한 자동 진단 시스템에도 효과적으로 활용될 수 있다.

차량 센서 데이터 조합을 통한 딥러닝 기반 차량 이상탐지 (Deep Learning-Based Vehicle Anomaly Detection by Combining Vehicle Sensor Data)

  • 김송희;김선혜;윤병운
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.20-29
    • /
    • 2021
  • 4차산업혁명 시대에는 대량의 데이터를 학습하여 예측과 분류의 정확성을 향상시킬 수 있는 인공지능의 활용이 핵심적이다. 그러나, 기존 이상탐지를 위한 방법은 제한된 데이터를 다루는 전통적인 통계 방법에 의존하고 있어, 정확한 이상탐지가 어렵다. 그러므로, 본 연구는 인공지능 기반 이상탐지 방법을 제시하여 예측 정확도를 높이고, 새로운 데이터 패턴을 정의하는 것을 목적으로 한다. 특히, 자동차의 경우 공회전 기간의 센서 데이터가 이상 탐지에 활용될 수 있다는 관점에서 데이터를 수집하고 분석하였다. 이를 위해, 예측 모델에 입력되는 데이터의 적정 시간 길이를 결정하고, 공회전 기간 데이터와 전체 운행 데이터의 분석 결과를 비교하며, 다양한 센서 데이터 조합에 의한 최적 예측 방법을 도출하였다. 또한, 인공지능 방법으로 선택된 CNN의 예측 정확성을 검증하기 위해 LSTM 결과와 비교하였다. 분석 결과, 공회전 데이터를 이용하고, 공회전 기간보다 1.5배 많은 기간의 데이터를 이용하며 LSTM보다는 CNN을 활용하는 것이 더 좋은 예측결과를 보였다.

데이터 효율적 이미지 분류를 통한 안질환 진단 (Data Efficient Image Classification for Retinal Disease Diagnosis)

  • 강홍구;양희규;김문성;추현승
    • 인터넷정보학회논문지
    • /
    • 제25권3호
    • /
    • pp.19-25
    • /
    • 2024
  • 전 세계적인 인구 고령화 현상으로, 녹내장, 백내장, 황반변성과 같은 실명을 초래할 수 있는 주요 안질환의 발병률이 상승하고 있다. 이에 안과 분야에서는 실명률을 줄이기 위해 예방이 어려운 질환의 진단에 관심이 집중되고 있다. 본 연구는 기존보다 적은 양의 데이터를 활용하여 안저 사진 내의 안질환을 정확하게 진단하는 딥러닝 방안을 제안한다. 이를 위해 적은 데이터로도 효과적인 학습이 가능한 Convolutional Neural Network (CNN) 모델을 선정하여 다양한 안질환 환자의 Conventional Fundus Image (CFI)를 분류 한다. 선정된 CNN 모델들은 Accuracy, Precision, Recall, F1-score에서 우수한 성능을 기록함으로써 CFI 내 안질환의 정확한 분류에 탁월한 성능을 보였다. 이러한 접근법은 안과 전문의들의 수작업 분석을 줄이고, 진료 시간을 단축하며, 리소스가 제한된 환경에서도 일관성 있는 진단 결과를 제공함으로써 의료 현장에 효율적이고 정확한 진단의 보조 도구로 기여할 수 있다.

Deep learning-based apical lesion segmentation from panoramic radiographs

  • Il-Seok, Song;Hak-Kyun, Shin;Ju-Hee, Kang;Jo-Eun, Kim;Kyung-Hoe, Huh;Won-Jin, Yi;Sam-Sun, Lee;Min-Suk, Heo
    • Imaging Science in Dentistry
    • /
    • 제52권4호
    • /
    • pp.351-357
    • /
    • 2022
  • Purpose: Convolutional neural networks (CNNs) have rapidly emerged as one of the most promising artificial intelligence methods in the field of medical and dental research. CNNs can provide an effective diagnostic methodology allowing for the detection of early-staged diseases. Therefore, this study aimed to evaluate the performance of a deep CNN algorithm for apical lesion segmentation from panoramic radiographs. Materials and Methods: A total of 1000 panoramic images showing apical lesions were separated into training (n=800, 80%), validation (n=100, 10%), and test (n=100, 10%) datasets. The performance of identifying apical lesions was evaluated by calculating the precision, recall, and F1-score. Results: In the test group of 180 apical lesions, 147 lesions were segmented from panoramic radiographs with an intersection over union (IoU) threshold of 0.3. The F1-score values, as a measure of performance, were 0.828, 0.815, and 0.742, respectively, with IoU thresholds of 0.3, 0.4, and 0.5. Conclusion: This study showed the potential utility of a deep learning-guided approach for the segmentation of apical lesions. The deep CNN algorithm using U-Net demonstrated considerably high performance in detecting apical lesions.

Application of a deep learning algorithm to Compton imaging of radioactive point sources with a single planar CdTe pixelated detector

  • Daniel, G.;Gutierrez, Y.;Limousin, O.
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1747-1753
    • /
    • 2022
  • Compton imaging is the main method for locating radioactive hot spots emitting high-energy gamma-ray photons. In particular, this imaging method is crucial when the photon energy is too high for coded-mask aperture imaging methods to be effective or when a large field of view is required. Reconstruction of the photon source requires advanced Compton event processing algorithms to determine the exact position of the source. In this study, we introduce a novel method based on a Deep Learning algorithm with a Convolutional Neural Network (CNN) to perform Compton imaging. This algorithm is trained on simulated data and tested on real data acquired with Caliste, a single planar CdTe pixelated detector. We show that performance in terms of source location accuracy is equivalent to state-of-the-art algorithms, while computation time is significantly reduced and sensitivity is improved by a factor of ~5 in the Caliste configuration.