• 제목/요약/키워드: CNN 신경망

검색결과 540건 처리시간 0.032초

딥러닝을 활용한 향상된 라벨인식 방법에 관한 연구 (A Study on Improved Label Recognition Method Using Deep Learning.)

  • 유성근;조성만;송민정;전소연;임송원;정서경;박상일;박구만;김희태;이대성
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.447-448
    • /
    • 2018
  • 라벨인식과 같은 광학 문자 인식은 영상처리를 활용한 컴퓨터 비전의 대표적인 연구분야이다. 본 연구에서는 딥러닝 기반의 라벨인식 시스템을 고안하였다, 생산 라인에 적용되는 라벨인식 시스템은 인식 속도가 중요하기 때문에 기존의 R-CNN기반의 딥러닝 신경망보다 월등히 빠른 오브젝트 검출 시스템 YOLO를 활용하여 문자를 학습 및 인식 시스템을 개발하였다. 본 시스템은 기존 시스템에 근접하는 문자인식 정확도를 제공하고 자동으로 문자영역을 검출 가능하며, 라벨의 인쇄불량을 판독하도록 하였다. 또한 개발, 배포, 적용이 한번에 가능한 프레임워크를 통하여 생산현장에서 발생하는 다양한 이미지 처리에 활용될 전망이다.

딥러닝을 이용한 전문분야 문서 분류 시스템 개발 (Development of Special Documents Classification System using Deep Learning)

  • 진상현;황상호;강원석;손창식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.589-591
    • /
    • 2019
  • 본 논문에서는 고도장비의 운용 및 정비를 위한 교육훈련 시스템 개발을 위해 자연어 처리와 딥러닝 기술을 이용하여 항공정비와 관련된 전문분야의 문서 분류가 가능한 방법을 제안하고자 한다. 문서 분류 모델의 개발을 위해 항공정비 교범을 텍스트 파일로 변환하여 총 4917개의 문서를 생성하였으며, 정비사 개인별 정비능력 관리(IMQC)를 기준으로 12개의 범주로 구분하였다. 수집된 문서는 전문분야의 문서인 점을 고려하여 전문용어 사전을 추가하였으며, KoNLPy를 이용하여 전처리를 수행하였다. 전문분야의 문서는 범주에 상관없이 문서 내용의 유사도가 매우 높은 특징을 가지고 있어, 특정 범주내에서 중요한 정도를 잘 표현 할 수 있는 TF-ICF를 이용하여 특징 추출을 하였다. 이후 합성곱 신경망(CNN)을 이용하여 특징 맵을 생성한 후 완전 결합 계층을 통하여 분류하였으며, 테스트 문서 983건을 분류한 결과 평균 73.6%의 분류성능을 보여주었다.

불균형데이터의 비용민감학습을 통한 국방분야 이미지 분류 성능 향상에 관한 연구 (A Study on the Improvement of Image Classification Performance in the Defense Field through Cost-Sensitive Learning of Imbalanced Data)

  • 정미애;마정목
    • 한국군사과학기술학회지
    • /
    • 제24권3호
    • /
    • pp.281-292
    • /
    • 2021
  • With the development of deep learning technology, researchers and technicians keep attempting to apply deep learning in various industrial and academic fields, including the defense. Most of these attempts assume that the data are balanced. In reality, since lots of the data are imbalanced, the classifier is not properly built and the model's performance can be low. Therefore, this study proposes cost-sensitive learning as a solution to the imbalance data problem of image classification in the defense field. In the proposed model, cost-sensitive learning is a method of giving a high weight on the cost function of a minority class. The results of cost-sensitive based model shows the test F1-score is higher when cost-sensitive learning is applied than general learning's through 160 experiments using submarine/non-submarine dataset and warship/non-warship dataset. Furthermore, statistical tests are conducted and the results are shown significantly.

합성곱 신경망(CNN)을 이용한 U-Net 기반의 인공지능 안면 정면화 모델 (Face Frontalization Model with A.I. Based on U-Net using Convolutional Neural Network)

  • 이상민;손원호;진창균;김지현;김지윤;박나은;김가은;권진영;이혜리;김종완;오덕신
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.685-688
    • /
    • 2020
  • 안면 인식은 Face ID를 비롯하여 미아 찾기, 범죄자 추적 등의 분야에 도입되고 있다. 안면 인식은 최근 딥러닝을 통해 인식률이 향상되었으나, 측면에서의 인식률은 정면에 비해 특징 추출이 어려우므로 비교적 낮다. 이런 문제는 해당 인물의 정면이 없고 측면만 존재할 경우 안면 인식을 통한 신원확인이 어려워 단점으로 작용될 수 있다. 본 논문에서는 측면 이미지를 바탕으로 정면을 생성함으로써 안면 인식을 적용할 수 있는 상황을 확장하는 인공지능 기반의 안면 정면화 모델을 구현한다. 모델의 안면 특징 추출을 위해 VGG-Face를 사용하며 특징 추출에서 생길 수 있는 정보 손실을 막기 위해 U-Net 구조를 사용한다.

딥러닝을 활용한 알약 인식 모델 연구 (A Study on Pill Recognition Model Using Deep Learning)

  • 최준식;윤수현;고혜인;권구환;정예락;이형원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.889-892
    • /
    • 2020
  • 현재 식품의약품안전처에서 공공데이터 포털에 제공하는 정보에 의하면 국내에는 20,000종 이상의 약이 유통되고 있다. 식약처와 여러 제약회사에서 기본적인 약 정보를 제공하고는 있지만 정확한 처방전이나 설명서가 없는 경우에 무분별한 약 복용의 위험성을 안고 있다. 일부 약 검색을 지원하는 사이트가 있으나 세부 사항을 사용자가 일일이 선택하고 입력해야 정확한 정보를 얻을 수 있다. 본 논문에서는 사용자의 스마트폰을 이용하여 알약을 촬영하면 해당 약을 인식하고 상세 정보를 알려주는 딥러닝 모델을 설계하였다. CNN 신경망을 사용하여 약의 모양, 색상, 마크, 분할선 등을 기준으로 분류하고 인식된 약의 세부 정보는 공공데이터로부터 받아온다.

딥러닝을 활용한 루푸스 신염 진단을 위한 생검 조직 내 사구체 검출 (Glomerular Detection for Diagnosis of Lupus Nephritis using Deep Learning)

  • 정제현;하석민;임종우;김현성;박호섭;명재경
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.85-87
    • /
    • 2022
  • 루푸스 신염을 정확히 진단하기 위해서는 신장의 침 생검을 통한 조직검사를 통해 사구체들을 찾아내고, 각각의 염증 정도를 분류해야 한다. 하지만 이에는 의료진의 많은 시간과 노력이 소요된다. 따라서 본 연구에서는 이러한 한계를 극복하기 위해 합성곱 신경망 (Convolutional neural network, CNN)에 기반한 검출 및 분할에 딥 러닝 접근법을 적용하는 YOLOv5 알고리즘을 통해 검체 이미지 내에서 사구체를 자동으로 검출해 내도록 하였다. 그리고 루푸스 신염 환자의 슬라이드 이미지에 대한 태깅 작업을 거쳐 학습을 위한 데이터와 테스트를 위한 데이터를 생성하여 학습 및 테스트에 활용하였다. 그 결과 고화질의 검체 이미지 내에서 대부분의 사구체를 0.9 이상의 높은 precision과 recall로 검출해 낼 수 있었다. 이를 통해 신장 내부의 사구체 검출을 자동화하고 추후 연구를 통해 사구체 염증 정도를 단계화 할 수 있는 발판을 마련하였다.

  • PDF

지역 중첩 신뢰도가 적용된 샴 네트워크 기반 객체 추적 알고리즘 (Object Tracking Algorithm based on Siamese Network with Local Overlap Confidence)

  • 임수창;김종찬
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1109-1116
    • /
    • 2023
  • 객체 추적은 영상의 첫 번째 프레임에서 annotation으로 제공되는 좌표 정보를 활용하여 비디오 시퀀스의 목표 추적에 활용된다. 본 논문에서는 객체 추적 정확도 향상을 위해 심층 특징과 영역 추론 모듈을 결합한 추적 알고리즘을 제안한다. 충분한 객체 정보를 획득하기 위해 Convolution Neural Network를 Siamese Network 구조로 네트워크를 설계하였다. 객체의 영역 추론을 위해 지역 제안 네트워크와 중첩 신뢰도 모듈을 적용하여 추적에 활용하였다. 제안한 추적 알고리즘은 Object Tracking Benchmark 데이터셋을 사용하여 성능검증을 수행하였고, Success 지표에서 69.1%, Precision 지표에서 89.3%를 달성하였다.

블레이드의 표면 결함 검출을 위한 Faster R-CNN 딥러닝 모델 구축 (Construction of Faster R-CNN Deep Learning Model for Surface Damage Detection of Blade Systems)

  • 장지원;안효준;이종한;신수봉
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권7호
    • /
    • pp.80-86
    • /
    • 2019
  • 컴퓨터 성능 향상으로 다양한 분야에서 딥러닝을 활용한 연구가 활발히 진행되고 있으며 최근에는 구조물 안전성 평가 연구에도 그 적용이 이루어지고 있다. 특히 터빈의 내부 블레이드는 분리가 쉽지 않고 어두운 주변 환경으로 인해 블레이드의 표면 결함 검출은 전문 인력의 경험에 의존하고 있으며, 점검시간도 상당히 소요되고 있는 실정이다. 따라서, 본 연구에서는 딥러닝 기술을 적용하여 터빈 구조의 부재 중 하나인 내부 블레이드에 발생하는 결함을 검출할 수 있는 효율적인 방법을 제시하였다. Faster R-CNN 인공신경망 기법을 활용하여 결함의 이미지 데이터를 학습하였고 부족한 이미지는 필터링과 Image Data Generator를 이용하여 데이터를 확장하였다. 그 결과 블레이드의 결함을 학습한 딥러닝 모델은 평균적으로 약 96.1%의 정확도와 재현율은 95.3%, 정밀도는 96%의 성능을 보였다. 재현율을 통해 제시된 딥러닝 모델이 결함을 탐지하지 못하는 경우는 4.7% 로 나타났다. 재현율의 성능은 여러 환경의 많은 결함 이미지 데이터를 수집하고 확장하여 딥러닝 학습에 적용함으로써 더욱 향상되리라 판단된다. 이러한 실제 블레이드의 결함 이미지 데이터 확보와 학습을 통해 향후 터빈엔진 정비에 적용 가능한 결함 검출 시스템으로 발전할 수 있을 것이다.

CNN 기반 철도차량 차체-대차 연결부의 결함 평가기법 연구 (Flaw Evaluation of Bogie connected Part for Railway Vehicle Based on Convolutional Neural Network)

  • 권석진;김민수
    • 한국산학기술학회논문지
    • /
    • 제21권11호
    • /
    • pp.53-60
    • /
    • 2020
  • 철도차량의 대차는 열차 주행을 위한 핵심적인 장치이다. 철도차량의 대차에서 피로결함은 운행 중 기대되지 않거나 과도한 하중, 용접결함, 재료 결함 등의 다양한 요인에 의해 발생할 수 있다. 철도차량의 사고를 방지하기 위해서 차체-대차연결부의 손상을 검출하고 발생 결함에 대한 정확한 평가가 요구된다. 이러한 철도차량의 차체-대차 연결부는 초음파 비파괴 검사를 통하여 건전성을 확보하고 있으나 결함 발생에 대한 학습기법을 이용한 판정방법이 필요하다. 최근 미세한 결함이나 유사한 결함을 높은 인식율로 검출하기 위하여 딥러닝 기법에 관한 여러 연구가 진행되고 있다. 본 연구에서는 철도차량의 차체-대차 연결부의 결함 검출능력을 위하여 용접부의 인공결함 시편에 대하여 데이터베이스 구축하였으며. 웨지형 초음파 센서를 이용하여 차체-대차 연결부에 대한 비파괴 검사를 수행하였다. 부가적으로 인적오류를 최소화하기 위하여 결함판단 학습기법인 합성곱 신경망기법(Convolutional Neural Network)을 적용하였다. 그 결과 합성곱 신경망기법 기법을 이용하여 철도차량의 차체-대차 연결 용접부의 균열을 99.98%이상 균열성 결함으로 판별할 수 있었으며 철도차량 차체-대차 연결부의 비파괴검사시 본 연구의 기술이 적용 가능함을 확인할 수 있었다.

기술 용어에 대한 한국어 정의 문장 자동 생성을 위한 순환 신경망 모델 활용 연구 (Research on the Utilization of Recurrent Neural Networks for Automatic Generation of Korean Definitional Sentences of Technical Terms)

  • 최가람;김한국;김광훈;김유일;최성필
    • 한국문헌정보학회지
    • /
    • 제51권4호
    • /
    • pp.99-120
    • /
    • 2017
  • 본 논문에서는 지속적으로 커져가는 산업 시장에 대해 관련 연구자들이 이를 효율적으로 분석할 수 있는 반자동 지원 체제개발을 위한 기술 용어와 기술 개념에 대한 정의문 및 설명문을 자동으로 생성하는 한국어 문장 생성 모델을 제시한다. 한국어 정의 문장 생성을 위하여 딥러닝 기술 중 데이터의 전/후 관계를 포함한 시퀀스 레이블링이 가능한 LSTM을 활용한다. LSTM을 근간으로 한 두 가지 모델은 기술명을 입력할 시 그에 대한 정의문 및 설명문을 생성한다. 다양하게 수집된 대규모 학습 말뭉치를 이용해 실험한 결과, 본 논문에서 구현한 2가지 모델 중 CNN 음절 임베딩을 활용한 어절 단위 LSTM 모델이 용어에 대한 정의문 및 설명문을 생성하는데 더 나은 결과를 도출시킨다는 사실을 확인하였다. 본 논문의 연구 결과를 바탕으로 동일한 주제를 다루는 문장 집합을 생성할 수 있는 확장 모델을 개발할 수 있으며 더 나아가서는 기술에 대한 문헌을 자동으로 작성하는 인공지능 모델을 구현할 수 있으리라 사료된다.