• 제목/요약/키워드: CNN 신경망

검색결과 540건 처리시간 0.022초

한국과 미국 방송사의 코로나19 뉴스에 대해 CNN 기반 정량적 음성 감정 양상 비교 분석 (Quantifying and Analyzing Vocal Emotion of COVID-19 News Speech Across Broadcasters in South Korea and the United States Based on CNN)

  • 남영자;채선규
    • 한국정보통신학회논문지
    • /
    • 제26권2호
    • /
    • pp.306-312
    • /
    • 2022
  • 전례 없는 코로나19 팬데믹 상황에서 대중의 정보에의 요구는 과도한 코로나19 뉴스 소비를 조장하였다. 뉴스는 대중의 심리적 안녕에도 영향을 미치기에 뉴스 보도 양태에 대한 각별한 주의가 요구된다. 이에 본 연구는 한국과 미국의 주요 뉴스 미디어의 코로나19 관련 뉴스의 음성 감정 양상을 합성곱 신경망에 기반하여 분석하였다. 분석 결과, 대부분의 뉴스 미디어에서 중립이 탐지되었으나 슬픔과 분노도 탐지되었다. 이러한 양상은한국의 뉴스 미디어에서 두드러진 반면 미국 뉴스 미디어에서는 나타나지 않았다. 본 연구는 코로나19 뉴스의 첫 음성 감정 분석 연구로, 뉴스의 감정 분석에 있어 새로운 방향을 제시할 뿐 아니라 팬데믹에 대한 이해 증진에 있어 광범위한 함의를 지닌다.

433 MHz 대역 송신기의 인증을 위한 RF 지문 기법 (RF Fingerprinting Scheme for Authenticating 433MHz Band Transmitters)

  • 김영민;이웅섭;김성환
    • 한국정보통신학회논문지
    • /
    • 제27권1호
    • /
    • pp.69-75
    • /
    • 2023
  • 사물인터넷에 사용되는 소형 통신 기기들은 적은 메모리 용량과 느린 연산 속도 때문에 고급 암호기법을 적용하지 못하기 때문에 각종 해킹에 취약하다. 본 논문은 433MHz 대역에서 동작하는 소형 송신기들의 인증 신뢰도를 높이기 위해 RF지문을 도입하고 분류 알고리즘으로 CNN (convolutional neural network) 을 사용한다. 각 송신기가 전송하는 프리엠블 신호를 소프트웨어정의라디오를 사용하여 추출하고 수집하여 학습 데이터 집합으로 만들고, 이를 신경망을 학습시키는 데에 사용한다. 네 가지의 시나리오에서 20개의 송신기의 식별을 테스트한 결과 높은 식별 정확도를 얻을 수 있었다. 특히 학습 데이터 수집 시의 위치와 다른 위치에서 테스트를 수행한 시나리오에서, 그리고 송신기가 걷는 속도로 이동하는 시나리오에서 각각 95.8%, 92.6%의 정확도를 산출함을 알 수 있었다.

VVC 화면 내 예측에서의 딥러닝 기반 예측 블록 개선을 통한 부호화 효율 향상 기법 (Accurate Prediction of VVC Intra-coded Block using Convolutional Neural Network)

  • 정혜선;강제원
    • 방송공학회논문지
    • /
    • 제27권4호
    • /
    • pp.477-486
    • /
    • 2022
  • 본 논문에서는 컨볼루션 신경망 네트워크를 이용하여 VVC 화면 내 예측으로 얻은 예측 블록을 개선하여 잔차 신호를 보다 줄이는 화면 내 예측 방법을 제안한다. 기존의 화면 내 예측 방법은 일부 고정 규칙을 기반으로 주변의 재구성된 참조 샘플로부터 예측 블록을 생성하므로 복잡한 콘텐츠의 예측 블록을 생성하기 어렵다는 한계가 있다. 또한, 참조 샘플로 이용할 수 있는 정보의 양이 시간적 주변 정보에 비해 적기 때문에 화면 간 예측보다 낮은 부호화 성능을 가진다. 본 연구에서는 앞서 언급한 문제를 해결하기 위해 기존의 비디오 부호화 과정의 화면 내 예측을 통해 생성되는 예측 블록에 CNN을 적용하여 원본 블록과 예측 블록의 차분 신호를 줄이는 화면 내 예측 방법을 제안한다. 부호기에서는 제안 알고리즘의 활성 여부를 나타내는 플래그가 함께 부호화된다. 제안하는 화면 내 예측 방법은 최신 비디오 압축 표준인 Versatile Video Coding의 참조 모델인 VTM version 10.0 대비 휘도 성분에 대하여 향상된 압축 성능을 제공한다.

딥러닝 기반 품종 및 감정인식 SNS를 포함하는 애완동물 관리 시스템 구현 (Implementation of Pet Management System including Deep Learning-based Breed and Emotion Recognition SNS)

  • 정인환;황기태;이재문
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권3호
    • /
    • pp.45-50
    • /
    • 2023
  • 최근 몇 년간 애완동물 소유 비율이 꾸준히 증가함에 따라 효과적인 애완동물 관리 시스템의 필요성이 커졌다. 본 연구에서는 딥러닝 기반 감정인식 SNS를 포함하는 애완동물 관리 시스템을 제안한다. 시스템은 합성곱 신경망(CNN)을 이용하여 애완동물의 표정을 통해 감정을 감지하고, SNS를 통해 사용자 커뮤니티와 공유된다. SNS를 통해 애완동물 주인들은 다른 사용자들과 연결되어 자신의 경험을 공유하고, 애완동물 관리에 대한 지원과 조언을 받을 수 있다. 또한, 시스템은 애완동물 건강 추적 및 예방접종 및 예약 알림 등의 기능을 포함하여 종합적인 애완동물 관리를 제공한다. 이에 더하여, 시스템은 애완동물 산책 기록을 관리하고 공유하는 기능을 추가하여 애완동물 주인들이 자신의 애완동물과 함께한 산책 기록을 다른 사용자들과 공유할 수 있다. 본 연구는 인공지능 기술을 활용하여 애완동물 관리 시스템을 개선하여 애완동물과 그 주인의 복지를 향상시키는 가능성을 보여주고 있다.

물고기의 성장도를 예측하는 FGRS(Fish Growth Regression System) (FGRS(Fish Growth Regression System), Which predicts the growth of fish)

  • 원성권;심용보;손수락;정이나
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.347-353
    • /
    • 2023
  • 양식장에서 물고기의 성장을 측정하는 작업은 아직도 사람의 손이 많이 가는 방식을 사용한다. 이 방식은 많은 노동력이 필요하고, 물고기가 스트레스를 받아 폐사율에 악영향을 준다. 이러한 문제를 해결하기 위해 물고기의 성장도를 자동화하기 위한 시스템 FGRS(Fish Growth Regression System)를 제안한다. FGRS는 두 개의 모듈로 구성된다. 첫째는 Yolo v8 기반의 물고기를 디텍팅하는 모듈이고, 둘째는 물고기 영상 데이터를 CNN 기반의 신경망 모델을 이용하여 물고기의 성장도를 예측하는 모듈로 구성된다. 시뮬레이션 결과 학습전에는 예측 오차가 평균 134.2일로 나왔지만 학습 이후 평균 오차가 39.8일 까지 감소했다. 본 논문에서 제안한 시스템을 이용해 생육일을 예측하여 물고기의 성장예측을 활용해 양식장에서의 자동화에 기여할 수 있고, 많은 노동력 감소와 비용 절감 효과를 가져 올 수 있을 것이라 기대한다.

Deep Learning-based Rheometer Quality Inspection Model Using Temporal and Spatial Characteristics

  • Jaehyun Park;Yonghun Jang;Bok-Dong Lee;Myung-Sub Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권11호
    • /
    • pp.43-52
    • /
    • 2023
  • 고무생산업체에서 생산된 고무는 레오미터 측정을 통해 품질 적합성 검사가 이루어진 후, 자동차 부품을 위한 2차 가공으로 이어진다. 그러나 레오미터 검사는 인간에 의해 진행되고 있으며, 숙련된 작업자에게 매우 의존적이라는 단점이 존재한다. 이러한 문제점을 해결하기 위해 본 논문에서는 딥러닝 기반 레오미터 품질 검사 시스템을 제안한다. 제안된 시스템은 레오미터의 시간적, 공간적 특성을 활용하기 위해 LSTM과 CNN을 조합하였고, 각 고무의 배합재료를 보조(Auxiliary) 데이터 입력으로 사용해 하나의 모델에서 다양한 고무 제품의 품질 적합성 검사가 가능하도록 구현하였다. 제안된 기법은 30,000개의 데이터셋으로 그 성능을 학습 및 검사하였으며, 평균 f1-점수를 0.9942 달성하여 그 우수성을 증명하였다.

Fashion Category Oversampling Automation System

  • Minsun Yeu;Do Hyeok Yoo;SuJin Bak
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.31-40
    • /
    • 2024
  • 국내 온라인 패션 플랫폼은 개인사업자가 제품정보를 직접 등록하기 때문에 개인사업자의 불편함을 초래한다. 많은 제품군을 한꺼번에 수동 등록하므로 수기 입력된 제품정보로 인한 신뢰성 문제가 발생한다. 등록된 상품 이미지의 저품질 및 데이터 수의 불균형으로 인한 편향도 심각하게 제기된다. 본 연구는 오버샘플링 기법을 통해 데이터 편향을 최소화하고 13개 패션 카테고리의 다중 분류를 수행하는 ResNet50 모델을 제안한다. 컴퓨팅 자원과 오랜 학습시간을 최소화하기 위해 전이학습을 활용했다. 결과적으로, 데이터 수가 매우 부족했던 클래스의 데이터 증강을 통해 기본 CNN 모델에 비해 최대 33.4%의 향상된 식별력을 보여주었다. 모든 결과의 신뢰성은 정밀도-재현율 곡선으로 보장한다. 본 연구는 국내 온라인 패션 플랫폼 산업의 발전을 한 단계 끌어올릴 수 있을 것으로 기대한다.

시뮬레이션 데이터 기반으로 학습된 딥러닝 모델을 활용한 지뢰식별연구 (Deep-Learning-Based Mine Detection Using Simulated Data)

  • 전부환;이춘주
    • 한국국방기술학회 논문지
    • /
    • 제5권4호
    • /
    • pp.16-21
    • /
    • 2023
  • 세계적으로 지뢰의 수는 감소하는 추세이지만, 과거에 묻힌 지뢰로 인한 피해는 계속되고 있다. 이에따라 본 연구는 지뢰탐지 장비의 개선과 미래 군인 수의 감소 등으로 인해 발생할 수 있는 문제점, 제한사항에 대한 해결방안을 생각하였다. 현재 지뢰탐지기들에는 데이터 저장 기능이 탑재되어 있지 않아 연구 등을 위한 데이터 구축에 제한사항이 있다. 그리고 실제 환경에서 데이터 구축은 많은 시간과 인력이 들어가게된다. 그래서 본 연구에서는 gprMax 시뮬레이션을 활용하여 데이터를 생성하고, CNN 기반의 경량 모델인 MobileNet을 학습시켰고, 실제 데이터로 검증한 결과 97.35%의 높은 식별율을 볼 수 있었다. 그러므로 딥러닝, 시뮬레이션 등의 기술이 지리탐지 장비 등에 접목되는 가능성을 보고, 미래 발생할 수 있을 문제점을 어느정도 해소하고 우리군이 미래 과학기술군이 되기위한 무기체계 발전의 발판이 되길 기대한다.

  • PDF

합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로 (Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image)

  • 서이안;신경식
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.1-19
    • /
    • 2018
  • 최근 딥러닝은 오디오, 텍스트 및 이미지 데이터와 같은 비 체계적인 데이터를 대상으로 다양한 추정, 분류 및 예측 문제에 사용 및 적용되고 있다. 특히, 의류산업에 적용될 경우 딥러닝 기법을 활용한 의류 인식, 의류 검색, 자동 제품 추천 등의 심층 학습을 기반으로 한 응용이 가능하다. 이 때의 핵심모형은 합성곱 신경망을 사용한 이미지 분류이다. 합성곱 신경망은 입력이 전달되고 출력에 도달하는 과정에서 가중치와 같은 매개 변수를 학습하는 뉴런으로 구성되고, 영상 분류에 가장 적합한 방법론으로 사용된다. 기존의 의류 이미지 분류 작업에서 대부분의 분류 모형은 의류 이미지 자체 또는 전문모델 착용 의류와 같이 통제된 상황에서 촬영되는 온라인 제품 이미지를 사용하여 학습을 수행한다. 하지만 본 연구에서는 통제되지 않은 상황에서 촬영되고 사람들의 움직임과 다양한 포즈가 포함된 스트릿 패션 이미지 또는 런웨이 이미지를 분류하려는 상황을 고려하여 분류 모형을 훈련시키는 효과적인 방법을 제안한다. 이동성을 포착하는 런웨이 의류 이미지로 모형을 학습시킴으로써 분류 모형의 다양한 쿼리 이미지에 대한 적응력을 높일 수 있다. 모형 학습 시 먼저 ImageNet 데이터셋을 사용하여 pre-training 과정을 거치고 본 연구를 위해 수집된 32 개 주요 패션 브랜드의 2426개 런웨이 이미지로 구성된 데이터셋을 사용하여 fine-tuning을 수행한다. 학습 과정의 일반화를 고려해 10번의 실험을 수행하고 제안된 모형은 최종 테스트에서 67.2 %의 정확도를 기록했다. 본 연구 모형은 쿼리 이미지가 런웨이 이미지, 제품 이미지 또는 스트릿 패션 이미지가 될 수 있는 다양한 분류 환경에 적용될 수 있다. 구체적으로는 패션 위크에서 모바일 어플리케이션 서비스를 통해 브랜드 검색을 용이하게 하는 서비스를 제공하거나, 패션 잡지사의 편집 작업에 사용되어 브랜드나 스타일을 분류하고 라벨을 붙일 수 있으며, 온라인 쇼핑몰에서 아이템 정보를 제공하거나 유사한 아이템을 추천하는 등의 다양한 목적에 적용될 수 있다.

고해상도 단순 이미지의 객체 분류 학습모델 구현을 위한 개선된 CNN 알고리즘 연구 (Study of Improved CNN Algorithm for Object Classification Machine Learning of Simple High Resolution Image)

  • 이협건;김영운
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권1호
    • /
    • pp.41-49
    • /
    • 2023
  • CNN(Convolutional Neural Network) 알고리즘은 인공신경망 구현에 활용되는 대표적인 알고리즘으로 기존 FNN(Fully connected multi layered Neural Network)의 문제점인 연산의 급격한 증가와 낮은 객체 인식률을 개선하였다. 그러나 IT 기기들의 급격한 발달로 최근 출시된 스마트폰 및 태블릿의 카메라에 촬영되는 이미지들의 최대 해상도는 108MP로 약 1억 8백만 화소이다. 특히 CNN 알고리즘은 고해상도의 단순 이미지를 학습 및 처리에 많은 비용과 시간이 요구된다. 이에 본 논문에서는 고해상도 단순 이미지의 객체 분류 학습모델 구현을 위한 개선된 CNN 알고리즘을 제안한다. 제안하는 알고리즘은 고해상도의 이미지들의 학습모델 생성 시간을 감소하기 위해 CNN 알고리즘의 풀링계층의 Max Pooling 알고리즘 연산을 위한 인접 행렬 값을 변경한다. 변경한 행렬 값마다 4MP, 8MP, 12MP의 고해상도 이미지들의 처리할 수 있는 학습 모델들을 구현한다. 성능평가 결과, 제안하는 알고리즘의 학습 모델의 생성 시간은 12MP 기준 약 36.26%의 감소하고, 학습 모델의 객체 분류 정확도와 손실률은 기존 모델 대비 약 1% 이내로 오차 범위 안에 포함되어 크게 문제가 되지 않는다. 향후 본 연구에서 사용된 학습 데이터보다 다양한 이미지 종류 및 실제 사진으로 학습 모델을 구현한 실질적인 검증이 필요하다.