• 제목/요약/키워드: CNN (Convolutional Neural Network)

검색결과 983건 처리시간 0.036초

임베디드 GPU에서의 딥러닝 기반 실시간 보행자 탐지 기법 (Deep Learning-Based Real-Time Pedestrian Detection on Embedded GPUs)

  • 비엔 지아 안;이철
    • 방송공학회논문지
    • /
    • 제24권2호
    • /
    • pp.357-360
    • /
    • 2019
  • 본 논문은 임베디드 GPU에서 실시간 동작하는 딥 컨볼루션 뉴럴 네트워크(CNN) 기반의 보행자 탐지 기법을 제안한다. 제안하는 기법에서는 먼저 영상 내 보행자 크기에 대한 통계적 분석을 통해서 최적의 컨볼루션 층의 개수를 결정한다. 또한, 본 논문에서는 다중 스케일 CNN 학습 기법을 적용하여 영상 내의 보행자 크기 변화에 강인한 탐지 기법을 개발한다. 컴퓨터 모의실험을 통해 제안하는 알고리즘이 임베디드 GPU에서 실시간 동작하면서도 기존의 기법과 비교하여 평균적으로 높은 정확도를 보임을 확인한다.

Convolutional Neural Network를 통한 대규모 한글 데이터 학습 (Learning of Large-Scale Korean Character Data through the Convolutional Neural Network)

  • 김연규;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.97-100
    • /
    • 2016
  • CNN(Convolutinal Neural Network)을 사용하여 다양한 분야에 대한 심화 학습이 진행되고 있으며 이미지 인식 분야에서 특히 높은 성능을 보이고 있다. 본 논문에서는 5,000,000개 이상의 대규모 한글 문자 데이터베이스를 사용하여 한글을 Convolutional Neural Network에 학습 시킨 후 테스트 정확도를 확인한다. 실험에 사용된 CNN 구조는 AlexNet에 기반하여 새로 만들어진 KCR(Korean Character Recognition)-AlexNet 이며 학습 결과 98% 이상의 테스트 정확도를 보였다. 실험에 사용된 데이터베이스는 대규모 한글 데이터 데이터베이스인 PHD08로 총 2,350개의 한글 문자에 대해 각 문자마다 2,187개의 샘플을 가져 총 5,139,450 개의 데이터가 존재한다. 본 연구를 통해 KCR-AlexNet이 한글 데이터베이스인 PHD08을 학습하는데 우수한 구조임을 보인다.

  • PDF

사이드 스캔 소나 영상에서 수중물체 자동 탐지를 위한 컨볼루션 신경망 기법 적용 (The application of convolutional neural networks for automatic detection of underwater object in side scan sonar images)

  • 김정문;최지웅;권혁종;오래근;손수욱
    • 한국음향학회지
    • /
    • 제37권2호
    • /
    • pp.118-128
    • /
    • 2018
  • 본 논문은 사이드 스캔 소나 영상을 컨볼루션 신경망으로 학습하여 수중물체를 탐색하는 방법을 다루었다. 사이드 스캔 소나 영상을 사람이 직접 분석하던 방법에서 컨볼루션 신경망 알고리즘이 보강되면 분석의 효율성을 높일 수 있다. 연구에 사용한 사이드 스캔 소나의 영상 데이터는 미 해군 수상전센터에서 공개한 자료이고 4종류의 합성수중물체로 구성되었다. 컨볼루션 신경망 알고리즘은 관심영역 기반으로 학습하는 Faster R-CNN(Region based Convolutional Neural Networks)을 기본으로 하며 신경망의 세부사항을 보유한 데이터에 적합하도록 구성하였다. 연구의 결과를 정밀도-재현율 곡선으로 비교하였고 소나 영상 데이터에 지정한 관심영역의 변경이 탐지성능에 미치는 영향을 검토함으로써 컨볼루션 신경망의 수중물체 탐지 적용성에 대해 살펴보았다.

딥러닝 알고리즘과 2D Lidar 센서를 이용한 이미지 분류 (Image Classification using Deep Learning Algorithm and 2D Lidar Sensor)

  • 이준호;장혁준
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1302-1308
    • /
    • 2019
  • 본 논문은 CNN (Convolutional Neural Network)와 2D Lidar 센서에서 획득한 위치 데이터를 이용하여 이미지를 분류하는 방법을 제시한다. Lidar 센서는 데이터 정확도, 형상 왜곡 및 광 변화에 대한 강인성 측면에서의 이점으로 인해 무인 장치에 널리 사용되어 왔다. CNN 알고리즘은 하나 이상의 컨볼루션 및 풀링 레이어로 구성되며 이미지 분류에 만족스러운 성능을 보여 왔다. 본 논문에서는 학습 방법에 따라 다른 유형의 CNN 아키텍처들인 Gradient Descent (GD) 및 Levenberg-arquardt (LM)를 구현하였다. LM 방법에는 학습 파라메터를 업데이트하는 요소 중 하나인 Hessian 행렬 근사 빈도에 따라 두 가지 유형이 있다. LM 알고리즘의 시뮬레이션 결과는 GD 알고리즘보다 이미지 데이터의 분류 성능이 우수하였다. 또한 Hessian 행렬 근사가 더 빈번한 LM 알고리즘은 다른 유형의 LM 알고리즘보다 작은 오류를 보여주었다.

CNN-based damage identification method of tied-arch bridge using spatial-spectral information

  • Duan, Yuanfeng;Chen, Qianyi;Zhang, Hongmei;Yun, Chung Bang;Wu, Sikai;Zhu, Qi
    • Smart Structures and Systems
    • /
    • 제23권5호
    • /
    • pp.507-520
    • /
    • 2019
  • In the structural health monitoring field, damage detection has been commonly carried out based on the structural model and the engineering features related to the model. However, the extracted features are often subjected to various errors, which makes the pattern recognition for damage detection still challenging. In this study, an automated damage identification method is presented for hanger cables in a tied-arch bridge using a convolutional neural network (CNN). Raw measurement data for Fourier amplitude spectra (FAS) of acceleration responses are used without a complex data pre-processing for modal identification. A CNN is a kind of deep neural network that typically consists of convolution, pooling, and fully-connected layers. A numerical simulation study was performed for multiple damage detection in the hangers using ambient wind vibration data on the bridge deck. The results show that the current CNN using FAS data performs better under various damage states than the CNN using time-history data and the traditional neural network using FAS. Robustness of the present CNN has been proven under various observational noise levels and wind speeds.

문자인식을 위한 공간 및 주파수 도메인 영상의 비교 (Comparison of Spatial and Frequency Images for Character Recognition)

  • ;최현영;고재필
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.439-441
    • /
    • 2019
  • 딥러닝은 객체인식 분야에서에서 강력하고, 강건한 학습 알고리즘이다. 딥러닝에서 자주 활용되고, 객체인식 분야에서 최고의 성능을 보여주는 네트워크는 Convolutional Neural Network(CNN) 이다. 숫자 필기 인식을 위한 MNIST 데이터셋를 CNN으로 학습하면 성능이 매우 뛰어나다. 이는 MNIST 데이터 셋의 숫자들이 중앙에 잘 정렬되어 있기 때문이다. 하지만, 실제 데이터들은 중앙에 정렬이 잘 되어있지 않다. 이러한 경우에 CNN은 이전과 같이 우수한 성능을 보여주지 못한다. 이를 해결하기 위해, 우리는 FFT를 활용하여 이미지를 주파수 공간으로 변환하여 입력으로 주는 방법을 제안한다.

  • PDF

Facial Expression Classification Using Deep Convolutional Neural Network

  • Choi, In-kyu;Ahn, Ha-eun;Yoo, Jisang
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.485-492
    • /
    • 2018
  • In this paper, we propose facial expression recognition using CNN (Convolutional Neural Network), one of the deep learning technologies. The proposed structure has general classification performance for any environment or subject. For this purpose, we collect a variety of databases and organize the database into six expression classes such as 'expressionless', 'happy', 'sad', 'angry', 'surprised' and 'disgusted'. Pre-processing and data augmentation techniques are applied to improve training efficiency and classification performance. In the existing CNN structure, the optimal structure that best expresses the features of six facial expressions is found by adjusting the number of feature maps of the convolutional layer and the number of nodes of fully-connected layer. The experimental results show good classification performance compared to the state-of-the-arts in experiments of the cross validation and the cross database. Also, compared to other conventional models, it is confirmed that the proposed structure is superior in classification performance with less execution time.

Faster R-CNN 기반의 실시간 번호판 검출 (Real-Time License Plate Detection Based on Faster R-CNN)

  • 이동석;윤숙;이재환;박동선
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권11호
    • /
    • pp.511-520
    • /
    • 2016
  • 자동차 번호판 검출 자동화(ALPD: Automatic License Plate Detection) 시스템은 효율적인 교통 관제를 위한 핵심 기술이며, 통행료 지불 시스템, 주차장 및 교통 관리와 같은 많은 응용에 사용되어 업무의 효율을 높이고 있다. 최근까지의 ALPD에 관한 연구에서는 주로 영상처리를 위해 설계된 기존의 특징들을 추출하여 번호판 검출에 사용해왔다. 이러한 종래의 방법은 속도에 이점은 있으나, 다양한 환경 변화에 따른 성능 저하를 보였다. 본 논문에서는 전반적인 성능을 향상시키기 위하여 Faster R-CNN과 CNN으로 구성되는 두 단 구조를 활용하는 방법을 제안한다. 이를 통해 동작 속도를 향상시키고, 다양한 환경변화에 강인하도록 구성하였다. 첫 번째 단계에서는 Faster R-CNN을 적용하여 번호판 영역 후보영역들을 선별하며, 두 번째 단에서 CNN을 활용하여 후보영역들 중에서 False Positives를 제거함으로써 검출률을 향상시켰다. 이를 통해 ZFNet을 기반으로 하여 99.94%의 검출률을 달성하였다. 또한 평균 운용시간은 80ms/image로써 빠르고 강인한 실시간 번호판 검출 시스템을 구현할 수 있었다.

CNN을 활용한 영상 기반의 화재 감지 (Image based Fire Detection using Convolutional Neural Network)

  • 김영진;김은경
    • 한국정보통신학회논문지
    • /
    • 제20권9호
    • /
    • pp.1649-1656
    • /
    • 2016
  • 기존의 센서 기반 화재 감지 시스템은 주변 환경이 센서에 미치는 요인들에 따라 성능이 크게 제한될 수 있다. 이러한 문제를 해결하기 위해 영상 기반의 화재 감지 시스템이 다수 등장했지만, 영상에서 화염의 특성을 사람이 직접 정의하여 알고리즘을 개발하기 때문에 유사 개체에 대해 오경보를 발생시킬 수 있다. 또한 영상 프레임간의 움직임을 이용할 경우, 네트워크가 원활하지 않은 환경에서는 의도한 알고리즘이 정확하게 동작하지 않는 단점이 있다. 본 논문에서는 입력 영상 프레임으로부터 색상정보를 이용하여 화염의 후보 영역을 먼저 검출한 다음, 학습된 CNN(Convolutional Neural Network)을 활용해서 최종적으로 화재를 감지하는, CNN을 활용한 영상 기반의 화재 감지 방법을 제안하였다. 또한, 검출률과 미검출율 및 오검출률의 비교를 통해서 기존 연구에 비해 성능이 크게 향상되었음을 보였다.

객체 검출을 위한 CNN과 YOLO 성능 비교 실험 (Comparison of CNN and YOLO for Object Detection)

  • 이용환;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제19권1호
    • /
    • pp.85-92
    • /
    • 2020
  • Object detection plays a critical role in the field of computer vision, and various researches have rapidly increased along with applying convolutional neural network and its modified structures since 2012. There are representative object detection algorithms, which are convolutional neural networks and YOLO. This paper presents two representative algorithm series, based on CNN and YOLO which solves the problem of CNN bounding box. We compare the performance of algorithm series in terms of accuracy, speed and cost. Compared with the latest advanced solution, YOLO v3 achieves a good trade-off between speed and accuracy.