• Title/Summary/Keyword: CNG fuel

Search Result 164, Processing Time 0.032 seconds

ANALYSIS OF IN-CYLINDER FUEL-AIR MIXTURE DISTRIBUTION IN A HEAVY DUTY CNG ENGINE

  • Lee, Seok-Y.;Huh, Kang-Y.;Kim, Y.M.;Lee, J.H.
    • International Journal of Automotive Technology
    • /
    • v.2 no.3
    • /
    • pp.93-101
    • /
    • 2001
  • Distribution of fuel-air mixture has a strong influence on performance and emissions of a compressed natural gas (CNG) engine. In this paper, parametric study is performed by KIVA-3V to investigate fuel-air mixture with respect to injection timing, cycle equivalence ratio and engine speed. With open-valve injection intensive mixing during intake and compression stroke results in relatively homogeneous mixture in the cylinder. Sequential induction of fuel-air mixture and fresh air results in stratification in the cylinder among the test cases at closed-valve injection. There is close similarity in the calculated distributions of the mixture in the cylinder with different cycle equivalence ratios and engine speeds. The results are compared against pressure traces and flame images obtained in a single cylinder engine converted from a 11L six-cylinder heavy duty diesel engine.

  • PDF

The Effect on the Combustion and Emission Characteristics of HCNG Engine According to the High Purity Hydrogen Contents (고순도 수소함량에 따른 HCNG 연소특성 및 배출가스 영향 평가)

  • Lee, Jong-Tae;Lim, Yun-Sung;Kim, Hyung-Jun;Lee, Seong-Wook;Lee, Jang-Hoon;Kim, Jong-Geu
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.152-157
    • /
    • 2012
  • This investigation decribes the effect of the combustion and emission characteristics of HCNG engine according to the high purity hydrogen contents. The HCNG fuel was made by the mixture with a high purity hydrogen ($H_2$) and a natural gas. The test vehicle was applied to the bi-fuel (Gasoline and CNG) system and this system was modified from the fuel supply and fuel tank. In addition, the three premixed HCNG fuels with mixed rate of 10, 20 and 30% of hydrogen were used to maintain the safety. In order to analyze the combustion characteristics of HCNG and CNG, the fuel was injected in the combustor with constant volume. The exhaust emission from light duty vehicle with bi-fuel system was analyzed by a chassis dynamometer and emission analyzer. From these results, the reduction rate of NOx emission increased in the HCNG fuel and emission amount of THC and CO shows a similar level with CNG fuel. This study can be utilized the basic data for the development of a new business plans related with HCNG engines.

Energy Based Source Location by Using Acoustic Emission for Damage Detection in Steel and Composite CNG Tank (금속 및 복합재 CNG 탱크에서의 손상 검출을 위한 음향방출 에너지 기반 위치표정 기술)

  • Kim, Il-Sik;Han, Byeong-Hee;Park, Choon-Su;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.332-340
    • /
    • 2015
  • Acoustic emission (AE) is an effective nondestructive test that uses transient elastic wave generated by the rapid release of energy within a material to detect any further growth or expansion of existing defects. Over the past decades, because of environmental issues, the use of compressed natural gas (CNG) as an alternative fuel for vehicles is increasing because of environmental issues. For this reason, the importance and necessity of detecting defects on a CNG fuel tank has also come to the fore. The conventional AE method used for source location is highly affected by the wave speed on the structure, and this creates problems in inspecting a composite CNG fuel tank. Because the speed and dispersion characteristics of the wave are different according to direction of structure and laminated layers. In this study, both the conventional AE method and the energy based contour map method were used for source location. This new method based on pre-acquired D/B was used for overcoming the limitation of damage localization in a composite CNG fuel tank specimen which consists of a steel liner cylinder overwrapped by GFRP. From the experimental results, it is observed that the damage localization is determined with a small error at all tested points by using the energy based contour map method, while there were a number of mis-locations or large errors at many tested points by using the conventional AE method. Therefore, the energy based contour map method used in this work is more suitable technology for inspecting composite structures.

A Study on the Optimization of Combustion and Emission Performance in a Heavy-duty HCNG Engine (Heavy-duty HCNG엔진의 연소 및 배기성능 최적화에 관한 연구)

  • Choi, Young;Park, Chul-Woong;Won, Sang-Yeon;Kim, Chang-Gi
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.15-20
    • /
    • 2011
  • Although CNG is able to meet the current emission standards, it is expected to be impossible to satisfy the requirements of the next EURO-6 emission regulation without an additional after-treatment device. Hydrogen is known to be a gaseous fuel which features the wide flammability limit and the fast reactivity. A certain amount of hydrogen addition to CNG is able to extend the lean combustion range and produce lesser amounts of harmful emissions. In this research, the combustion and emission characteristics of HCNG(mixture of Hydrogen and CNG) fuel were experimented in an 11-liter heavy duty lean burn engine varying hydrogen contents, air-to-fuel ratio and spark timing. The optimization of this HCNG engine for a city bus was performed through the evaluations of oxidation catalyst characteristics.

A Study on Durability Test of Check Valve for CNG Vehicles (천연가스 차량용 체크밸브의 내구성능에 관한 연구)

  • Kim, Chang-Gi;Lee, Sun-Youp;Cho, Gyu-Baek
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.15-20
    • /
    • 2009
  • The number of compressed natural gas (CNG) vehicles have increased gradually by virtue of korea government's urban air quality improvement policy since 1998. Although the use of CNG as transportation fuel gives environmental benefits, there is a possibility of huge accidents from unexpected fire. Therefore, needs for the guarantee of safety are indispensible for the reliable operation of CNG vehicles. A check valve is a safety device which prevents leakage of the pressurized fuel charged in a fuel tank. Durability of this component should be guaranteed in spite of repeated operation. This research has performed durability tests of a CNG check valve regarding the repeated usage, extreme chattering, and the effect of compressor oil.Although a check valve used for CNG vehicle satisfies validation requirements in the test results, it has been found that problem in the function of leakage prevention in a check valve could take place in the case of prolonged exposure to compressor oil.

  • PDF

Performance Analysis and Emission Characteristics of a Bi-fuel Using Spark Ignition Engine

  • Mahmud, Md. Iqbal;Cho, Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.351-359
    • /
    • 2010
  • Bi-fuel system in a spark ignition engine (SIE) is a rising phenomena in today's automobile technology. In a gasoline driven vehicle, alternatively adoption of compressed natural gas (CNG) could be used as a potential substitute to meet the energy requirement and this is possible by some minor changes in the hardware of the existing engine. Gasoline engine is widely used in the passenger cars, light, medium and heavy duty vehicles but the consumption status of the petroleum is decreasing worldwide and at the same time environmental pollution from automobiles is seriously establishes as a threat for every nation in respect to global warming and climate changes. Now-a-days most vehicles operate using CNG for its popularity stems, clean burning properties and cost effective solution compared to other alternative fuels. It refers as a good gaseous fuel because of its high octane number and self ignition temperature. Though the power output is slightly lesser than the gasoline fuel; its thermal efficiency is better than the gasoline for the same SIE. The research paper highlights the reduction of CO, reasonable outcomes of HC emissions with minor increase in $NO_x$ emissions compared with the gasoline fuel to bi-fuel mode in the SIE that meets the emission challenges.

A Basic Study on Combustion Characteristics of Radical Ignition Sub-chamber Type CNG DI Engine (라디칼 점화 부실 혼합형 CNG DI 엔진의 연소특성에 관한 기초연구)

  • Chung, Sung-Sik;Hwang, Seong-Ill;Lim, Choon-Mee
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.56-63
    • /
    • 2018
  • After the recent fabrication of diesel vehicle exhaust gas by Volkswagen, nitrogen oxides ($NO_x$) and particulate matter (PM) are drawing attention as representative pollutants included in exhaust gas. When gasoline and diesel fuels are combusted through direct injection into a combustion chamber at high pressure, PM emission is actually increased. To find a solution to this problem, a basic study was conducted to derive an optimized variable for combustion of compressed natural gas (CNG) by applying CNG, acknowledged as a clean fuel, to direct injection system. The essence of this study is in the introduction of a radical ignition technology for compressed natural gas (RI-CNG) in a sub-chamber type engine. The direct injection system was applied to a sub-chamber to remove residual gas from previous combustion cycle. In addition, optimal mixer distribution was achieved by precisely setting ignition timing based on fuel injection timing and excess air ratio.

Parametric Study on Combustion Characteristics of CNG Fuel (연소실 매개변수에 따른 천연가스 연소 특성)

  • Lee, Seang-Wock;Song, Young-Mo;Baik, Doo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.513-517
    • /
    • 2008
  • A parametric study was made to understand the fundamentals of combustion of CNG fuel in a constant volume chamber in the respect of swirl effect, and the numbers of spark ignition. Optical devices were applied for the visualization of the physics of combustion, and combustion pressures and exhaust emission were measured at several equivalence ratios by controlling speeds of a swirling motor. When the speed of a swirling motor was raised the combustion conditions were improved. The corresponding maximum combustion pressure and heat release rate were increased and the speed of flame propagation was getting faster. This research may contribute to improve the performance of CNG engine and reduce emissions in future.