• 제목/요약/키워드: CNG engine

검색결과 119건 처리시간 0.018초

CNG/Diesel 이종연료용 엔진의 성능 및 배출가스 특성에 대한 연구 (Study on Performance and Emission Characteristics of CNG/Diesel Dual-Fuel Engine)

  • 임옥택
    • 대한기계학회논문집B
    • /
    • 제35권9호
    • /
    • pp.869-874
    • /
    • 2011
  • CNG/diesel dual-fuel 엔진은 CNG 를 주 연료로 사용하고 소량의 디젤을 착화제로서 실린더 내에 분사한다. 본 연구에서는 기존의 디젤엔진을 커먼레일직접분사(CRDI)를 통하여 고압으로 디젤을 분사하고, 예혼합을 위하여 CNG 를 흡기포트에 분사하는 CNG/diesel dual-fuel 엔진으로 개조하였다. CNG/diesel dualfuel engine 은 기존의 디젤엔진과 동등한 수준의 토크 및 출력성능을 나타내었다. 또한, CNG 대체율은 CNG/diesel dual-fuel 엔진의 전체 운전영역에 대하여 89% 이상을 만족시켰다. Dual-fuel 엔진의 PM 배출농도는 디젤엔진보다 94% 더 낮게 나타났지만, NOx 배출농도는 더 높게 나타났다.

CNG/Diesel Dual-fuel 엔진의 CNG 혼합율에 따른 엔진성능 및 배출가스 특성에 관한 연구 (The Engine Performance and Emission Characteristics of CNG/Diesel Dual-fuel Engine by CNG Mixing Ratio)

  • 최건호;임옥택
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.38-43
    • /
    • 2011
  • A CNG/diesel dual-fuel engine uses CNG as the main fuel and injects a small amount of diesel as an ignition priming. This study proposed the modification of the existing diesel engine into a dual-fuel engine that injects diesel with a high pressure by common rail direct injection (CRDI) and by injecting CNG at the intake port for premixing. And experiment was progressed for understanding about effect of CNG mixing ratio. The CNG/diesel dual-fuel engine showed equally satisfactory coordinate torque and power regardless of CNG mixing ratio. The PM emission was low at any CNG mixing ratio because of very small diesel pilot injection. In case of NOx and HC, high CNG mixing ratio showed low NOx and HC emissions at low speed. At medium & high speed, low CNG mixing ratio showed low NOx and HC emissions. Therefore, it would be optimized by controlling CNG mixing ratio.

CNG 전소기관의 배출가스에 관한 실험적 연구 (An experimental Study on Exhaust Emissions of CNG Dedicated Engine)

  • 오용석
    • 한국대기환경학회지
    • /
    • 제16권2호
    • /
    • pp.159-164
    • /
    • 2000
  • A CNG dedicated engine one of the types in natural gas engine is assessed as the most effective mechanism for the reduction of exhaust emissions. This work described the measuring results of a CNG dedicated engine by the experiment, In this study the characteristics of the CNG engine was investigated and then measured exhaust gas by engine performance mode at maximum load condition with increasing the engine speed in the range of 1,000-2,200rpm. The exhaust emission was also measured at D-13 mode as well as AVL-8 mode.

  • PDF

점화시기 및 당량비 변화에 따른 CNG 기관의 성능 및 배출가스에 관한 연구 (A Study on Performance and Exhaust Emission in CNG Engine by Ignition Timing and Equivalent Ration Change)

  • 한영출;오용석;박봉규;김대열;김미수
    • 한국공작기계학회논문집
    • /
    • 제10권4호
    • /
    • pp.65-69
    • /
    • 2001
  • Research on the development of CNG dedicated engine that has important meaning both as a clean fuel and an alterna- tive energy to reduce the exhaust emission from diesel engine are actively going on these days. In this study, in order to present the direction and application of CNG engine, we tested the CNG engine performance experimented by changing the parameters such as ignition timing, equivalent ratio. The engine performance experimented by changing the parameters such as ignition timing, equivalent ratio. The engine performance and exhaust emission were measured by engine performance model at maximum load condition with increasing the rpm in the range of 1,000∼2,200rpm. Also, the testing engine was heavy-duty CNG dedicated engine with displacement of 11,050cc.

  • PDF

산화촉매를 장착한 대형 CNG 엔진의 나노입자 배출특성 (Nanoparticles Emission Characteristics of Heavy-Duty CNG Engine with Oxidation Catalyst)

  • 김태준;김화남;최병철
    • 동력기계공학회지
    • /
    • 제12권5호
    • /
    • pp.27-33
    • /
    • 2008
  • Natural gas has been considered one of the most promising alternative fuels for transportation because of its abundance as well as its ability to reduce regulated pollutants. We measured emission characteristics of nanoparticles from lean burn H/D(Heavy-Duty) CNG (Compressed Natural Gas) engine equipped with oxidation catalysts. The experiments were carried out to measure the emission and engine performance according to the ESC test cycle. The CO and THC conversion efficiencies on the best catalyst in the ESC test cycle achieved about 91 % and 83 %, respectively. From the measurement by the SMPS, the number of nanoparticles emitted from H/D CNG engine is reduced by about 99 % which is more than that of 2.5 L diesel engine. The particle number concentrations of H/D CNG engine were almost nanoparticles. Nanoparticles smaller than 30 nm emitted from the H/D CNG engine and diesel engine equipped with a CDPF(Catalyzed Diesel Particulate Filter) were quite similar. However, the particles bigger than 30nm from the CNG engine were smaller than the particles from diesel engine equipped with a CDPF. The higher the CNG engine load, the lower the particle number from engine-out, but it increased slightly at full load.

  • PDF

디젤엔진개량에 의한 천연가스차량전환에 관한 연구 (A Study on Natural Gas Vehicle Conversion by Diesel Engine Improvement)

  • 한영출;오용석;나완용
    • 한국생산제조학회지
    • /
    • 제8권2호
    • /
    • pp.94-94
    • /
    • 1999
  • Natural gas is considered to be on e of the most promising candidates for a clean substitute fuel and a great amount of research on the compressed natural gas(CNG) fueled vehicle has been performed. In this s tudy, we try to understand the property of CNG fuel with using CNG engine experiment. In order to present the direction and application of CNG, we experiment with various operating conditions that is, spark timing, A/F ratio, air quantity and fuel quantity, etc. 11,967 cc engine was used in the experiment and the engine fuel ratio was determined in the way that the performance of dedicated CNG engine is corresponded to that of existing diesel engine. The performance and dedicated CNG engine were measured by changing the fuel injection timing. The dedicated CNG engine was proved to be good in describing the experimental results and according to the actual road test, acceleration and constant speed driving for dedicated CNG engine was better than existing diesel engine.

부분부하에서 연료 조성이 천연가스 엔진의 연소 및 배기에 미치는 영향 (The Effect of Fuel Composition on Emissions and Combustion of CNG Engine at Partial Load)

  • 김형민;이기형;김봉규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3288-3293
    • /
    • 2007
  • Compressed natural gas has good potential for alternative vehicle fuel due to its economical and clean characteristics. However, the composition of natural gas based on production location is known to affect performance and emissions of CNG engine. Thus, the objective of this paper is to clarify the effect of fuel composition on combustion and emissions of CNG engine. This paper presents combustion characteristics obtained from running a 2.5L, 4-cylinder CNG engine retrofitted IDI diesel engine with engine dynamometer. BSFC, emissions, fuel consumption and combustion pressure were measured under steady state operating conditions especially at partial load for CNG engine. Based on the experimental results, we found that CNG composition affects engine performance, fuel conversion efficiency and burning rate.

  • PDF

바이오디젤-CNG 혼소엔진에서 파일럿 분사량이 연소 및 배기 특성에 미치는 영향 (Effects of Pilot Injection Quantity on the Combustion and Emissions Characteristics in a Diesel Engine using Biodiesel-CNG Dual Fuel)

  • 유경현
    • 한국분무공학회지
    • /
    • 제21권2호
    • /
    • pp.95-103
    • /
    • 2016
  • The effect of pilot injection quantity on the combustion and emissions characteristics of a compression ignition engine with a biodiesel-compressed natural gas (CNG) dual fuel combustion (DFC) system is studied in this work. Biodiesel is used as a pilot injection fuel to ignite the main fuel, CNG of DFC. The pilot injection quantity is controlled to investigate the characteristics of combustion and exhaust emissions in a single cylinder diesel engine. The injection pressure and injection timing of pilot fuel are maintained at approximately 120 MPa and BTDC 17 crank angle, respectively. Results show that the indicated mean effective pressure (IMEP) of biodiesel-CNG DFC mode is similar to that of diesel-CNG DFC mode at all load conditions. Combustion stability of biodiesel-CNG DFC mode decreased with increase of engine load, but no notable trend of cycle-to-cycle variations with increase of pilot injection quantity is discovered. The combustion of biodiesel-CNG begins at a retarded crank angle compared to that of diesel-CNG at low load, but it is advanced at high loads. Smoke and NOx of biodiesel-CNG are simultaneously increased with the increase of pilot fuel quantity. Compared to the diesel-CNG DFC, however, smoke and NOx emissions are slightly reduced over all operating conditions. Biodiesel-CNG DFC yields higher $CO_2$ emissions compared to diesel-CNG DFC over all engine conditions. CO and HC emissions for biodiesel-CNG DFC is decreased with the increase of pilot injection quantity.

압축비 변경에 따른 CNG차량의 성능특성 연구 (Performance Characteristics of CNG Vehicle at Various Compression Ratios)

  • 김봉석;이영재;고창조
    • 에너지공학
    • /
    • 제5권1호
    • /
    • pp.42-49
    • /
    • 1996
  • 천연가스는 기존 내연기관의 구조를 크게 변경시키지 않고도 사용이 가능하며, 저공해성, 안전성, 내구성 등에 있어서 우수한 특성을 가지고 있고, 매장량이 풍부하다는 점에서 자동차용 대체연료로서 유망시 되고 있다. 본 연구에서는 기존 가솔린 기관을 CNG 전용기관으로 개조한 후, 공연비, 점화시기 등과 같은 기관 운전조건들을 최적화한 CNG전용기관을 기존 가솔린차량에 탑재하여, 샤시동력계상에서 연료소비량 및 배기배출물 농도를 측정·비교하였다. 또한, 실도로상에서 가속성, 운전성 등의 차량 주행특성에 대해서도 평가하였다. 그 결과, 시작 CNG차량의 경우에는 가솔린 차량에 비하여 연비는 향상되었고 배기배출물은 저감되었으나 출력은 약간 감소되었다.

  • PDF

수소-천연가스 혼합연료기관의 최적 수소 분사율 검토 (An Investigation on the Proper Hydrogen Mixing Rate in Heavy-Duty Hydrogen-CNG Engine)

  • 임희수;김윤영;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제15권2호
    • /
    • pp.89-97
    • /
    • 2004
  • A heavy duty hydrogen enriched CNG engine has the possibility to obtain stable operation at ultra lean condition and to reduce emission extremely. And it can also serve as a so called bridge technology between the current fossil fueled engine and the future hydrogen power system. The emission, torque and brake thermal efficiency characteristics of a heavy-duty hydrogen-CNG engine were investigated to determine the proper mixing rate of hydrogen and CNG. It was found that the proper mixing rates at ${\lambda}=1.4$ and ${\lambda}=1.6$ were around 20% and 30% for hydrogen addition rate respectively.