• Title/Summary/Keyword: CNCPS

Search Result 13, Processing Time 0.031 seconds

Application of Cornell Net Carbohydrate and Protein System to Lactating Cows in Taiwan

  • Chiou, Peter Wen-Shyg;Chuang, Chi-Hao;Yu, Bi;Hwang, Sen-Yuan;Chen, Chao-Ren
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.6
    • /
    • pp.857-864
    • /
    • 2006
  • The aim of this study was to apply the Cornell net carbohydrate and protein system (CNCPS) in subtropical Taiwan. This was done by means of 3 trials, viz, in situ, lactation and metabolic trials, the latter using the urinary purine derivatives (UPD) to estimate the ruminal microbial yield. Dietary treatments were formulated according to different nutrient requirement systems including, (1) a control NRC78 group on NRC (1978), (2) a NRC88 group on NRC (1988), and (3) a CNCPS group on Cornell Net carbohydrate and protein system model. Results from the lactation trial showed that DM intake (DMI) was higher (p<0.05) in the NRC78 than the other treatment groups. The treatments did not significantly influence milk yield, but milk yield after covariance adjustment for DMI was higher in the CNCPS group (p<0.05). The FCM, milk fat content and yield were greater in both the NRC78 and the NRC88 group over the CNCPS group (p<0.05). The treatments did not significantly influence the DMI adjusted FCM. The solid-non-fat and milk protein contents were higher in the CNCPS group (p<0.05) with or without DMI covariance adjustment. Lactating efficiency was higher in the CNCPS group (p<0.05) compared to the other groups. The significantly lowest milk urea-N (MUN) with better protein utilization efficiency in the CNCPS group (p<0.05) suggested that less N would be excreted into the environment. Cows in the CNCPS group excreted significantly more and the NRC88 group significantly less urinary purine derivatives (UPD) implying that more ruminal microbial protein was synthesized in the CNCPS over the NRC88 group. The CNCPS could become the most useful tool in predicting the trends in milk yield, microbial yield and MUN.

Relationship between the Methane Production and the CNCPS Carbohydrate Fractions of Rations with Various Concentrate/roughage Ratios Evaluated Using In vitro Incubation Technique

  • Dong, Ruilan;Zhao, Guangyong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.12
    • /
    • pp.1708-1716
    • /
    • 2013
  • The objective of the trial was to study the relationship between the methane ($CH_4$) production and the Cornell Net Carbohydrate and Protein System (CNCPS) carbohydrate fractions of feeds for cattle and the suitability of CNCPS carbohydrate fractions as the dietary variables in modeling the $CH_4$ production in rumen fermentation. Forty-five rations for cattle with the concentrate/roughage ratios of 10:90, 20:80, 30:70, 40:60, and 50:50 were formulated as feed samples. The Menke and Steingass's gas test was used for the measurement of $CH_4$ production. The feed samples were incubated for 48 h and the $CH_4$ production was analyzed using gas chromatography. Statistical analysis indicated that the $CH_4$ production (mL) was closely correlated with the CNCPS carbohydrate fractions (g), i.e. CA (sugars); $CB_1$ (starch and pectin); $CB_2$ (available cell wall) in a multiple linear pattern: $CH_4=(89.16{\pm}14.93)$ $CA+(124.10{\pm}13.90)$ $CB_1+(30.58{\pm}11.72)$ $CB_2+(3.28{\pm}7.19)$, $R^2=0.81$, p<0.0001, n = 45. Validation of the model using 10 rations indicated that the $CH_4$ production of the rations for cattle could accurately be predicted based on the CNCPS carbohydrate fractions. The trial indicated that the CNCPS carbohydrate fractions CA, $CB_1$ and $CB_2$ were suitable dietary variables for predicting the $CH_4$ production in rumen fermentation in vitro.

Effects of CNCPS fraction-enriched proteins on ruminal fermentation and plasma metabolites in holstein steers fed TMR containing low protein (저단백질 TMR을 기초사료로 급여한 홀스타인 거세우에 있어서 CNCPS fraction별 고함유 단백질 공급이 반추위 발효패턴 및 혈액대사물질에 미치는 영향)

  • Choi, Chang Weon
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.3
    • /
    • pp.237-244
    • /
    • 2015
  • Four ruminally cannulated Holstein steers (BW $401.0{\pm}2.22kg$) fed TMR containing low protein (CP 9.63 %) as a basal diet were used to investigate the effects of cornell net carbohydrates and protein system (CNCPS) fraction enriched protein feeds on rumen fermentation and blood metabolites. The steers used in a $4{\times}4$ Latin square design consumed TMR only (control), TMR with rapeseed meal (AB1), TMR with soybean meal (B2) and TMR with perilla meal (B3C), respectively. The protein feeds were substituted for 30 % crude protein of TMR intake. For measuring ruminal pH, ammonia-N and volatile fatty acids (VFA), ruminal digesta was sampled through ruminal cannula at 1 h-interval after the afternoon feeding. Blood was sampled via the jugular vein after the ruminal digesta sampling. Different CNCPS fraction-enriched proteins did not affect (p>0.05) ruminal pH except B3C being numerically low compared with the other groups. Ammonia-N and VFA were not significantly different among the experimental groups. Numerically low ammonia-N appeared in the steers fed rapeseed meal even though it contained high soluble N composition (A and B1 fractions). The discrepancy is unclear; however this may be related to low protein level in the diet and/or low DM intake. Blood metabolites were not significantly affected by the protein substitution except for blood urea nitrogen that was significantly (p<0.05) increased.

Evaluation of Dry Matter Intake and Average Daily Gain Predicted by the Cornell Net Carbohydrate and Protein System in Crossbred Growing Bulls Kept in a Traditionally Confined Feeding System in China

  • Du, Jinping;Liang, Yi;Xin, Hangshu;Xue, Feng;Zhao, Jinshi;Ren, Liping;Meng, Qingxiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.11
    • /
    • pp.1445-1454
    • /
    • 2010
  • Two separate animal trials were conducted to evaluate the coincidence of dry matter intake (DMI) and average daily gain (ADG) predicted by the Cornell Net Carbohydrate and Protein System (CNCPS) and observed actually in crossbred growing bulls kept in a traditionally confined feeding system in China. In Trial 1, 45 growing Simmental${\times}$Mongolia crossbred F1 bulls were assigned to three treatments (T1-3) with 15 animals in each treatment. Trial 2 was conducted with 60 Limousin${\times}$Fuzhou crossbred F2 bulls allocated to 4 treatments (t1-4). All of the animals were confined in individual stalls. DMI and ADG for each bull were measured as a mean of each treatment. All of the data about animals, environment, management and feeds required by the CNCPS model were collected, and model predictions were generated for animals on each treatment. Subsequently, model-predicted DMI and ADG were compared with the actually recorded results. In the three treatments in Trial 1, 93.3, 80.0 and 73.3% of points fell within the range from -0.4 to 0.4 kg/d for DMI mean bias; similarly, in the four treatments in Trial 2, about 86.7, 73.3, 73.3 and 80.0% of points fell within the same range. These results indicate that the CNCPS model can accurately predict DMI of crossbred bulls in the traditionally confined feeding system in China. There were no significant differences between predicted and observed ADG for T1 (p = 0.06) and T2 (p = 0.09) in Trial 1, and for t1 (p = 0.07), t2 (p = 0.14) and t4 (p = 0.83) in Trial 2. However, significant differences between predicted and observed ADG values were observed for T3 in Trial 1 (p<0.01) and for t3 in Trial 2 (p = 0.04). By regression analysis, a statistically different value of intercept from zero for the regression equation of DMI (p<0.01) or an identical value of ADG (p = 0.06) were obtained, whereas the slopes were significantly different (p<0.01) from unity for both DMI and ADG. Additionally, small root mean square error (RMSE) values were obtained for the unbiased estimator of the two variances (DMI and ADG). Thus, the present results indicated that the CNCPS model can give acceptable estimates of DMI and ADG of crossbred growing bulls kept in a traditionally confined feeding system in China.

Prediction of Dry Matter Intake in Lactating Holstein Dairy Cows Offered High Levels of Concentrate

  • Rim, J.S.;Lee, S.R.;Cho, Y.S.;Kim, E.J.;Kim, J.S.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.677-684
    • /
    • 2008
  • Accurate estimation of dry matter intake (DMI) is a prerequisite to meet animal performance targets without penalizing animal health and the environment. The objective of the current study was to evaluate some of the existing models in order to predict DMI when lactating dairy cows were offered a total mixed ration containing a high level of concentrates and locally produced agricultural by-products. Six popular models were chosen for DMI prediction (Brown et al., 1977; Rayburn and Fox, 1993; Agriculture Forestry and Fisheries Research Council Secretariat, 1999; National Research Council (NRC), 2001; Cornell Net Carbohydrate and Protein System (CNCPS), Fox et al., 2003; Fuentes-Pila et al., 2003). Databases for DMI comparison were constructed from two different sources: i) 12 commercial farm investigations and ii) a controlled dairy cow experiment. The model evaluation was performed using two different methods: i) linear regression analysis and ii) mean square error prediction analysis. In the commercial farm investigation, DMI predicted by Fuentes-Pila et al. (2003) was the most accurate when compared with the actual mean DMI, whilst the CNCPS prediction showed larger mean bias (difference between mean predicted and mean observed values). Similar results were observed in the controlled dairy cow experiment where the mean bias by Fuentes-Pila et al. (2003) was the smallest of all six chosen models. The more accurate prediction by Fuentes-Pila et al. (2003) could be attributed to the inclusion of dietary factors, particularly fiber as these factors were not considered in some models (i.e. NRC, 2001; CNCPS (Fox et al., 2003)). Linear regression analysis had little meaningful biological significance when evaluating models for prediction of DMI in this study. Further research is required to improve the accuracy of the models, and may recommend more mechanistic approaches to investigate feedstuffs (common to the Asian region), animal genotype, environmental conditions and their interaction, as the majority of the models employed are based on empirical approaches.

Evaluation of Diet for Buffalo Dairy Cows Using the Cornell Net Carbohydrate and Protein System

  • Calabro, S.;Piccolo, V.;Infascelli, F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.10
    • /
    • pp.1475-1481
    • /
    • 2003
  • The aim of this paper was to use the Cornell Net Carbohydrate and Protein System (CNCPS), that reports diet energy and protein value and animal requirements, as net energy for lactation ($NE_1$) and metabolizable protein (MP) respectively, to evaluate some rations for lactating Italian Mediterranean buffaloes. The investigation was carried out on six farms in the province of Caserta (southern Italy), where the milk production was controlled four times monthly on 10 animals (changing every time) chosen at different lactation days (5 categories): <2 months (A), 2-4 months (B), 4-6 months (C), 6-8 months (D), >8 months (E). Milk fat and protein were determined. Diet $NE_1$ and MP were estimated with the CPM-Dairy program (1998) using diet component chemical characteristics; then energy and protein intakes were estimated. $NE_1$ and MP requirements were estimated with two methods: 1) using CPM-Dairy that considers produced milk, fat and protein content, lactation phase and body condition score as main factors; 2) by applying the theory that to produce 1 kg of energy corrected milk, the buffalo needs 3.56 MJ of $NE_1$ and the efficiency to convert the absorbed aminoacids into milk protein is lower than cow (CNCPS). As regards energy, with method 1 the requirements were satisfactory starting from category A (4 out of 6 farms) and category B (5/6 farms); however, a surplus resulted for category E (5/6 farms). With method 2 a deficit in category A (5/6 farms) and B (3/6 farms) was observed, while the energy requirements were satisfied for all categories except E, where on only one buffalo farm had a surplus of energy intake. As regards protein, with method 1 the requirements were substantially satisfied for all the categories except E (3/6 farms); with method 2 the MP trend was much less favourable than with method 1. Indeed, a protein deficit was observed for all animals in categories A and B (5/6 farms). Moreover, on one farm the protein intake never satisfied animal requirements. In our experimental conditions, the use of the CNCPS to characterise diets for lactating buffalo and to calculate their requirements led to satisfactory results. By contrast, we cannot say the same for method 2, which applies a lower use efficiency of NE and MP for lactation in buffalo compared to cow.

Changes in in vivo ruminal fermentation patterns and blood metabolites by different protein fraction-enriched feeds in Holstein steers

  • Choi, Chang Weon
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.3
    • /
    • pp.392-399
    • /
    • 2017
  • The present study was conducted to investigate the effects of different dietary proteins as fraction-enriched protein, defined by Cornell net carbohydrates and protein system (CNCPS), on in vivo ruminal fermentation pattern and blood metabolites in Holstein steers fed total mixed ration (TMR) containing 17.2% crude protein. Four ruminally cannulated Holstein steers in a $4{\times}4$ Latin square design consumed TMR only (control) and TMR with rapeseed meal (AB1), soybean meal (B2), and perilla meal (B3C). Each protein was substituted for 23.0% of crude protein in TMR. Rumen digesta were taken through ruminal cannula at 1 h interval during the feeding cycle in order to analyze ruminal pH, ammonia-N, and volatile fatty acids (VFA). Plasma metabolites in blood taken via the jugular vein after the rumen digesta sampling were analyzed. Feeding perilla meal significantly (p < 0.05) decreased mean ruminal pH compared with control and the other protein feeding groups. Compared with control, feeding protein significantly (p < 0.05) increased ruminal ammonia-N concentration except for AB1. Statistically (p > 0.05) similar total VFA appeared among control and the supplemented groups. However, control, AB1, and B2 showed higher (p < 0.05) acetate concentrations than B3C, and propionate was vice versa. CNCPS fractionated protein significantly (p < 0.05) affected concentrations of albumin and total protein in blood; i.e. plasma albumin was lower for control and B2 groups than AB1 and B3C groups. Despite lack of significances (p > 0.05) in creatinine and blood urea nitrogen, AB1 and B2 groups were numerically higher than the others.

Effect of extrusion of soybean meal on feed spectroscopic molecular structures and on performance, blood metabolites and nutrient digestibility of Holstein dairy calves

  • Berenti, Ammar Mollaei;Yari, Mojtaba;Khalaji, Saeed;Hedayati, Mahdi;Akbarian, Amin;Yu, Peiqiang
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.855-866
    • /
    • 2021
  • Objective: Performance and physiological responses of dairy calves may change by using extruded soybean meal (ESBM) instead of common soybean meal (SBM) in starter feed. The aims of the current study were i) to determine the effect of extrusion processing of SBM on protein electrophoretic size, fourier transform infrared spectroscopy (FTIR) structures and Cornell Net Carbohydrate and Protein System (CNCPS) protein subfractions and ii) to determine the effect of substitution of SBM with ESBM in starter feed of Holstein heifer calves during pre and post-weaning on performance, nutrient digestibility, and blood metabolites. Methods: The SBM was substituted with ESBM at the level of 0%, 25%, 50%, 75%, and 100% (dry matter [DM] basis). Fifty heifer calves (initial body weight 40.3±0.63 kg) were used for the study. After birth, animals were fed colostrum for 3 days and then they were fed whole milk until weaning. Animals had free access to starter feed and water during the study. Results: Extrusion of SBM decreased electrophoretic protein size and increased rapidly degradable true protein fraction, changed FTIR protein and amide II region. With increasing level of ESBM in the diet, starter intake increased quadratically during the pre-weaning period (p<0.05) and body weight, DM intake and average daily gain increased linearly during the post-weaning and the whole study period (p<0.05). Tbe DM and crude protein digestibilities at week 14 and blood glucose and beta hydroxybutyric acid increased linearly in calves as the level of ESBM increased in the diet (p<0.05). Conclusion: Dairy calves performance and physiological responses were sensitive to SBM protein characteristics including electrophoretic size, FTIR structures and CNCPS protein fractions.

Comparison of in vitro digestibility and chemical composition among four crop straws treated by Pleurotus ostreatus

  • Nie, Haitao;Wang, Ziyu;You, Jihao;Zhu, Gang;Wang, Hengchang;Wang, Feng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.24-34
    • /
    • 2020
  • Objective: The effects of Pleurotus ostreatus on the feed utilization of broad bean stalks (BBS), rape straw (RS), paddy straw (PS), and corn stalk (CS) was examined. Methods: The four roughages were co-cultured with Pleurotus ostreatus. The chemical composition; enzyme activities of laccase, carboxymethylcellulase (CMCase) and xylanase; carbohydrate and protein fractions (based on The Cornell Net Carbohydrate and Protein System [CNCPS]) were assessed at different days after inoculation (7, 14, 21, 28 d) and un-inoculated roughages (control, 0 d). The digestibility of nutrient components and the gas production of roughage with various incubation times were monitored at 0, 2, 4, 6, 9, 12, 24, 36, 48, 60, and 72 h using an in vitro ruminal fermentation method. Results: A higher CMCase activity (0.1039 U/mL) and earlier time to peak (14 d) were detected in Pleurotus ostreatus cultured with CS (p<0.05). Significantly, the incubation length-dependent responses of cumulative gas production were observed from 24 to 72 hours post fermentation (p<0.05), and these incubation length-dependent effects on cumulative gas production of PS and CS appeared earlier (24 h) for PS and CS than those (48 h) for BBS and RS (p<0.05). The fast-degradable carbohydrate (CA) content for all four roughages significantly increased over time (p<0.05). Nonetheless, increased degradation efficiency for CA treated with Pleurotus ostreatus was detected at both 21 and 28 days of incubation (p<0.05). With the exception of PS (p<0.05), there were no significant difference among the roughages (p>0.05) in slowly-degradable carbohydrate (CB2) at different incubation times (p<0.05). Conclusion: Assessment of the alterations in chemical composition, CNCPS system fractions, and the fermentation kinetics after biological pretreatment may yield a valuable database for evaluating the biological pretreatment of Pleurotus ostreatus in ruminant feed.

Changes in ruminal fermentation and blood metabolism in steers fed low protein TMR with protein fraction-enriched feeds

  • Choi, Chang Weon
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.379-386
    • /
    • 2016
  • Four ruminally cannulated Holstein steers (BW $482.9{\pm}8.10kg$), fed low protein TMR (CP 11.7%) as a basal diet, were used to investigate changes in rumen fermentation and blood metabolism according to protein fraction, cornell net carbohydrates and protein system (CNCPS), and enriched feeds. The steers, arranged in a $4{\times}4$ Latin square design, consumed TMR only (control), TMR supplemented with rapeseed meal (AB1), soybean meal (B2), and perilla meal (B3C), respectively. The protein feeds were substituted for 23.0% of CP in TMR. Ruminal pH, ammonia-N, and volatile fatty acids (VFA) in rumen digesta, sampled through ruminal cannula at 1 h-interval after the morning feeding, were analyzed. For plasma metabolites analysis, blood was sampled via the jugular vein after the rumen digesta sampling. Different N fraction-enriched protein feeds did not affect (p > 0.05) mean ruminal pH except AB1 being numerically lower 1 - 3 h post-feeding than the other groups. Mean ammonia-N was statistically (p < 0.05) higher for AB1 than for the other groups, but VFA did not differ among the groups. Blood urea nitrogen was statistically (p < 0.05) higher for B2 than for the other groups, which was rather unclear due to relatively low ruminal ammonia-N. This indicates that additional studies on relationships between dietary N fractions and ruminant metabolism according to different levels of CP in a basal diet should be required.