• Title/Summary/Keyword: CNC Lathe Machining

Search Result 52, Processing Time 0.021 seconds

A Study on the Development of Machining and Measuring System for CNC Lathe (CNC 선반가공 및 자동 측정시스템 개발에 관한 연구)

  • Kim, Jeong-soon;Koo, Young-hae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.83-90
    • /
    • 2000
  • The purpose of this study is the development of CAM system which can machine and measure any shape by CNC lathe. The overall goal of the CAM system is to achieve the CNC lathe machining, from roughing through to final measuring, The hardware of the system comprises PC, CNC lathe and measuring tools. There are three steps in the CNC lathe machining and measuring, (1) geometric modeling by the shape patterns, (2) NC commands generation by the tool path compensated for tool nose radius, (3) machining and workpiece measuring on the lathe. It is developed a software package, with which we can conduct a micro CAM system in the PC without economical burden.

  • PDF

A Study on the Development of CAM System for CNC Lathe Machining (CNC 선반 가공용 CAM 시스템 개발에 관한 연구)

  • 구영희;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.438-442
    • /
    • 1997
  • The pupose of this study is the development of CAM system which can cut any shape by CNC lathe.. The overall goal of the CAM system is to achieve the CNC lathe machining, form roughing through to final measuring. The hardware of the system comprises PC and CNC lathe. There are three steps in the CNC lathe machining, (1) geometric modeling by the shape patterns, (2) NC commands generation by the tool path compensated for tool nose radius,(3) machining and workpiece measuring on the lathe. It is developed a software package, with which can conduct a micro CAM system in the PC without economical burden.

  • PDF

Development of a high precision CNC lathe for mirror surface machining (경면가공용 고정밀 CNC 선반 개발)

  • 박청홍;이후상;신영재;이군석;김춘배
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.82-88
    • /
    • 1997
  • In this paper, the development of a precision CNC lathe prototype for mirror surface machining is presented. To obtain high precision machining accuracy, a hydrostatically supported precision spindle and a sliding guideway with turcite pad are adopted as the motion elements. The machining accuracy of the prototype machine, and the motional accuracy of its motion elements are tested and evaluated to confirm the validity of the application of these elements on the prototype. The hydrostatic spindle shows 0.09 .mu. m of rotational accuracy and the guideway shows about 0.8 .mu. m/170mm of horizontal straightness. The sur- face roughness of cupper and aluminium cylinder machined by the prototype machine with diamond tool are 0.07 .mu. m and 0.10 .mu. m Rmax respectively. From these results, it is verified that the prototype lathe is avail- able for high precision machining.

  • PDF

Design and Machining Precision Evaluation of Pneumatic Clamping Type Guide-bush System (공압식 소재물림 가이드부쉬 시스템의 설계 및 가공정도 평가)

  • Lee, Jae-Hoon;Yi, Su-Min;Park, Seong-Hun;Lee, Shi-Bok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.859-866
    • /
    • 2010
  • Generally, a fixed type guide-bush system is installed during machining miniature work-pieces with high precision in the multi-task CNC lathe. But a conventional guide-bush system does not provide a constant clamping force under the condition of varying work-piece diameters. It is important to maintain a constant clamping force for guaranteeing machining precision. This paper proposes a new guide-bush system with a pneumatic clamping device for the CNC Swiss-turn lathe to keep constant clamping force with changes in work-piece diameters. Through performance tests, new clamping system developed in the study showed better machining precision at the cost of a small increase in the temperature of the system than conventional systems due to an increase in the frictional heat and a change in the heat transfer route.

A study on the Desing Technuque of a Process Interration CNC Lathe for High Productivity (공정집약형 CNC 선반의 설계기술에 관한 연구)

  • 박종권;최대봉;황주호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.651-657
    • /
    • 1996
  • Industrial products are getting more and more complex. The number of parts or components and the variety of manufacturing processes are increasing. This leads to rapid product oriented machine tools. The process integrated CNC lathe is one of the these machine tools which can produce numerous parts and various machining processes and reduce the lead time and non-machining time. Therefore this study deals with the design technique of a process-intergated CNC lathe which can reduce the tact time and production cost by the speed-up of the tooling system and the high-speed machining oriented construction of 2 spindles and 2 turrets.

  • PDF

Modeling and Simulation of 4-Axis Dedicated Robot for CNC Lathe (CNC 선반용 4축 전용로봇의 모델링 및 시뮬레이션)

  • Kim, Han-Sol;Kim, Gab-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.49-56
    • /
    • 2021
  • This paper describes the modeling and simulation of a four-axis dedicated robot that can attach and detach a workpiece on a computer numerical control (CNC) lathe. The robot was modeled as a Scarab robot for compatibility with CNC lathes. The advantages of such a robot are that an actuator with a small capacity can be used for the robot and the degrees of freedom of the robot can be reduced to four. For the simulation of the four-axis dedicated robot, a regular kinematic equation and an inverse kinematic equation were derived. Simulations were performed with these equations from the position of the loading device to the chuck position of the lathe before machining and from the chuck of the lathe to the position of the loading device after machining. The simulation results showed that the four-axis dedicated robot could be operated accurately, and they provided the joint angle of each motor (θ1, θ2, and θ3).

A Study on the Standard Roughness for SUS440C Internal Diameter Machining Using a CNC Automatic Lathe (CNC 자동선반을 이용한 SUS440C 안지름 가공에 대한 표준 거칠기에 관한 연구)

  • Chul-Woong Choi;Sik-Won Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.605-613
    • /
    • 2023
  • The multi-axis combined machining technology has enabled combined machining, which was difficult. However, the reality is that manufacturing costs are rising due to expensive equipment and there is a shortage of machine operation engineers. The purpose of this research is to present the optimum cutting conditions for the surface roughness when processing the inner diameter of SUS440C, which is an egg material, using a CNC automatic lathe. As a result of measuring the surface roughness, dry machining was the best at Ra0.481㎛ at a spindle speed of 4,000rpm, a feed rate of 0.05rev/min, and a cutting depth of 0.3mm. In wet machining, the highest value was Ra0.317 at a spindle speed of 2,000 rpm, a feed rate of 0.05 rev/min, and a cutting depth of 0.2 mm. The lower the feed rate, the better surface roughness appears. It was found that the feed rate had more influence than the number of revolutions and depth of cut.

Effect of Cooling Method on Surface Roughness in Turning (선삭가공에서 표면 거칠기에 미치는 냉각방법의 영향)

  • Kim, Yeong-Duck
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.87-93
    • /
    • 2011
  • CNC lathe machining has been widely used for parts machining of vehicles, aircraft, ships, electronics, etc. because cost savings for shortening processing time and increasing productivity are great. In this study, the purpose is to investigate the effect of cooling methods such as oil mist, water-soluble cutting oils on the workpiece surface roughness with the cutting speed, cutting depth, tool nose radius and feed rate of CNC lathe machine as a parameter in the cutting process of the aluminum alloy 2024 which is used a lot recently on aircraft parts. It is found that oil mist is coolant and water-soluble cooled by cutting the experimental conditions, cutting speed and cutting depth without effecting the surface roughness value was constant.

Development of A Precision CNC Lathe for mirror surface (경면가공용 고정밀CNC 선반 개발)

  • 박천홍;이후상;신영재;이군석;김상환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.646-650
    • /
    • 1996
  • In this paper, A hydrostatic bearing spindle for high precision machining and a motor built-in spindle for high speed machining are developed toobtain the high precision machining accuracy of the prototype lathe. The sliding bearing with fluoric resin (turcite) pad is adopted for improving the damping charateristics of guide ways. The funning accuracy of moving elements isestimated to confirm the validity of application on the prototype; the high precision CNC lathe. The surface roughness of Cupper and Aluminum machined by the hydrostatic spindle are 0.07 .mu. m and 0.10 .mu. mRmax. The surface roughness of Aluminium machined by the built-in spindle are 0.10 .mu. mRmax. From this results, it is venified that the prototype lathe is effective to high precision maching.

  • PDF

A Study on Detection of Runout Eccentric Error Using CCS Sensor at CNC Lathe (CNC선반에서 주축변위센서를 이용한 가공편심오차의 검출에 관한 연구)

  • 양재생;맹희영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.468-473
    • /
    • 2002
  • This paper presents the methodology for measuring eccentricity of the cylindricaliy machined part using CCS(Cylindrical Capacity Spindle Sensor) signal in the CNC turning process. In order to investigate the relationships between CCS orbits and eccentricities, the initial conditions for various eccentricity state and machining process is applied to the experimental strategy. AS a result, it is considered the linearities of CCS signal and magnitude of eccentricity of machined cylindrical surfaces based on the possibility as a automatic detection apparatus for the CNC lathe.

  • PDF