• Title/Summary/Keyword: CN 방법

Search Result 233, Processing Time 0.025 seconds

Estiamtion of Groundwater Recharge Rate Using the NRCS-CN and the Baseflow Separation Methods (NRCS-CN방법과 기저유출 분리법을 이용한 지하수함양률 산정)

  • Bae Sang-Keun;Kim Yong-Ho
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.253-260
    • /
    • 2006
  • Groundwater recharge from precipitation is affected by the infiltration from ground surface and the movement of soil water. Groundwater recharge is directly related to the groundwater amount and flow in aquifers, and baseflow to rivers. Determining groundwater recharge rate for a given watershed is a prerequisite to estimate sustainable groundwater resources. The estimation of groundwater recharge rate were carried out for three subwatersheds in the Wicheon watershed and two subwatersheds in the Pyungchang River basin and for the period 1990-2000, using the NRCS-CN method and the baseflow separation method. The recharge rate estimates were compared to each other. The result of estimation by the NRCS-CN method shows the average annual recharge rate 15.4-17.0% in the Wicheon watershed and 26.4-26.8% in the Pyungchang River basin. The average annual recharge rates calculated by the baseflow separation method ranged 15.1-21.1% in the W icheon watershed, and 25.2-33.4% in the Pyungchang River basin. The average annual recharge rates calculated by the NRCS-CN method is less variable than the baseflow separation method. However, the average annual recharge rates obtained from the two methods are not very different, except NO. 6 subwatershed in Pyungchang River basin.

Estimation of Precipitation Recharge in the Pyungchang River Basin Using SCS-CN Method (SCS-CN방법을 이용한 평창강 유역의 강수 함양량 선정)

  • Lee Seung Hyun;Bae Sang Keun
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1033-1039
    • /
    • 2004
  • The methodology developed by Soil Conservation Service for determination of runoff value from precipitation is applied to estimate the precipitation recharge in the Pyungchang river basin. Two small areas of the basin are selected for this study. The CN values are determined by considering the type of soil, soil cover and land use with the digital map of 1:25,000. Forest covers more than $94{\%}$ of the study area.. The CN values for the study area vary between 47 in the forest area and 94 in the bare soil under AMC 2 condition. The precipitation recharge rate is calculated for the year when the precipitation data is available since 1990. To obtain the infiltration rate, the index of CN and five day antecedent moisture conditions are applied to each precipitation event during the study period. As a result of estimation, the value of precipitation recharge ratio in the study area vary between $15.2{\%}\;and\;35.7{\%}$ for the total precipitation of the year. The average annual precipitation recharge rate is $26.4{\%}\;and\;26.8{\%}$, meaning 377.9mm/year and 397.5mm/year in each basin.

Comprehension of the infiltration characteristics of the Han stream basin in Jeju Island using the flow observation data (관측자료를 이용한 제주도 한천 유역의 침투 특성 파악)

  • Kang, Minseok;Song, Sunguk;Jeong, Jinung;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.108-108
    • /
    • 2020
  • 본 연구에서는 관측자료를 이용하여 제주도 한천 유역의 침투 특성을 파악하고자 하였다. 이를 위해 2012년부터 2019년까지 제주도 한천 유역의 주요 호우사상을 선정하고 한천 하류부의 위치한 제2동산교 지점의 유출량 자료를 이용하였다. 먼저 호우사상별 유출량 자료를 이용하여 유효우량(또는 유출고) 산정하고 초기손실을 결정하였다. 다음으로 유효우량과 초기손실을 NRCS CN 방법에 적용하여 최대잠재보유수량과 CN을 산정하였다. 산정된 호우사상별 CN 및 초기손실을 검토하기 위해 선행일수에 따른 선행강우량과 유출량과의 관계와 강우-유출 과정의 각 요소 간의 관계를 확인하였다. 마지막으로 초기손실, 최대잠재보유수량, CN 등 각 요소들의 분포와 이상치를 확인하여 제주도 한천 유역의 적절한 CN 및 초기손실의 규모를 검토하였으며, 그 결과, 제주도 한천 유역의 적절한 초기손실, 최대잠재보유수량, α, 지체시간의 규모는 각각 30 mm~40 mm, 170 mm~190 mm, 0.20~0.23, 50~60, 60 min~90 min으로 나타났다.

  • PDF

Assessment of AnnAGNPS Model in Prediction of a Rainfall-Runoff Relationship (AnnAGNPS 모형의 강우-유출해석력 평가)

  • Choi, Kyung-Sook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.125-135
    • /
    • 2005
  • Generation and transport of nonpoint source pollution, especially sediment-associated pollutants, are profoundly influenced by hydrologic features of runoff. In order to identify pollutant export rates, hence, clear knowledge of rainfall-runoff relationship is a pre-requisition. In this study, performance of AnnAGNPS model was assessed based on the ability of the model to predict rainfall-runoff relationship. Three catchments, each under different nearly single land use, were simulated. From the results, it was found that the model was likely to produce better predictions for larger catchments than smaller catchments. Because of using the daily time scale, the model could not account for short durations less than 24 hours, especially high intensity events with multiple peak flow that significantly contribute to the generation and transport of pollutants. Since CN information for regional areas has not been built up, a careful selection of CN is needed to achieve accurate prediction of runoff volume. Storm distribution also found to be considered as an important calibration parameter for the hydrologic simulation.

  • PDF

Estimation of Groundwater Recharge from Precipitation in a Small Basin (소유역의 강수에 의한 지하수 함양량 산정)

  • Bae, Sang-Keun;Lee, Seung-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.5
    • /
    • pp.397-406
    • /
    • 2004
  • It is necessary to estimate the groundwater recharge rate properly to evaluate the reasonable development amount of groundwater in a specific site. A small basin in Wicheon River Basin located in the Province of Kyungsangbuk-Do is selected to calculate the groundwater recharge rate. Average annual groundwater recharge rates are calculated from 1992 to 1997 because wet and draught year are contained during this period. In the calculation, baseflow separation method and SCS-CN method are applied to this area. As a result of estimation by baseflow separation method, the value of groundwater recharge ratio is varied between 11.9% and 18.7%. The average annual recharge rate is 14.5%. The average annual recharge rate calculated by SCS-CN method is varied between 7.9% and 20.9%. The average annual recharge rate in the calculation period is 15.1%. The results show that the average annual recharge amount from infiltration in the study basin is 141.6mm and 147.4mm in each estimation method. It appears that the average annual recharge amount calculated for the long period containing wet and draught year by the two methods is useful for groundwater development.

Estimation of Curve Number by DAWAST Model (DAWAST 모형을 이용한 유출곡선번호 추정)

  • Kim, Tae-Cheol;Park, Seung-Gi;Mun, Jong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.423-430
    • /
    • 1997
  • It is one of the most important factors to determine the effective rainfall for estimation of flood hydrograph in design schedule. SCS curve number (CN) method has been frequently used to estimate the effective rainfall of synthesized design flood hydrograph for hydraulic structures. But, it should be cautious to apply SCS-CN originally developed in U.S.A to watersheds in Korea, because characteristics of watersheds in Korea and cropping patterns especially like a paddy land cultivation are quite different from those in USA. New CN method has been introduced. Maximum storage capacity which was herein defined as Umax can be calibrated from the streamflow data and converted to new CN-I of direst condition of soil moisture in the given watershed. Effective rainfall for design flood hydrograph can be estimated by the curve number developed in the watersheds in Korea.

  • PDF

Curve Number for a Small Forested Mountainous Catchment (산지 소유역 유출곡선지수)

  • Oh, Kyoung-Doo;Jun, Byong-Ho;Han, Hyung-Geun;Jung, Sung-Won;Cho, Young-Ho;Park, Soo-Yun
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.605-616
    • /
    • 2005
  • In this paper, runoff curve numbers (CN's) for a small forested mountainous catchment are estimated using rainfall-runoff data measured at Sulma experimental catchment every 10 minutes and a new guideline for applying the antecedent rainfall conditions (ARC's) for small mountainous watersheds in Korea is proposed. Sulma experimental catchment is a typical natural mountainous basin with $97\%$ of forested land cover and CN's are estimated to be in the range between 51 and 89 with median value of 72. The test hypothesis stating as 1-day ARC is better than 5-day ARC in determining CN's for a small mountainous watershed is shown to be acceptable. Also, linear regression equations for the estimation of CN's for small mountainous catchments are proposed. As there is no significant investigations available on CN's for small mountainous catchments, the newly proposed relationships between CN's and ARC may be used as a preliminary guideline to assign CN's for the estimation of floods from rainfall data on mountainous regions.

Sensitivity Analysis of the Runoff Model Parameter for the Optimal Design of Hydrologic Structures (수공구조물의 적정설계를 위한 유출모형 매개변수의 민감도 분석)

  • Lee, Jung-Hoon;Kim, Chang-Sung;Kim, Mun-Mo;Yeo, Woon-Kwang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1488-1492
    • /
    • 2007
  • 현재 도시화로 인한 유출량의 증가 및 도달시간의 단축은 도시 재해의 한 원인이 되고 있으며 그에 따라 수공구조물에 대한 적정 설계가 필요하다. 하지만 계획단계에서부터 설계에 필요한 값을 예측하기는 매우 어려운 실정이다. 더구나 개발로 인해 매개변수가 변화함에 따라 유출 영향 분석이 어려울 뿐 아니라 이에 따른 연구가 미흡한 실정이기 때문에 모형매개변수의 민감도 분석을 통해 유출영향 분석 및 수공구조물 적정설계의 중요 기반자료로 활용하고자 본 연구를 수행하였다. 본 연구에서는 민감도 분석방법 중 절대 및 상대 민감도 분석 방법을 사용하여 각 유역의 지형학적 수문학적 매개변수들의 민감도 분석을 통해 상관관계를 확인하였다. 특히 대표적인 매개변수로서 유출계수 CN의 변화에 따른 유출량 및 유출 용적의 관계를 통해 CN의 증감에 따른 유출량 및 유출용적의 변화량을 산정하고, 또한 각 매개변수들간의 회귀분석을 통해 경험식을 작성, 제안하였다. 한편 현재 국내에서 사용중인 HEC-HMS를 모의하여 매개변수의 민감도 분석을 실시하였다. 본 연구의 결과로 CN값이 개발 전후 5% 증가시 유출량은 약 10%정도 증가한다는 것을 HEC-HMS모의와 자료의 분석을 통해 확인 할 수 있었다. 본 연구의 결과에 대해 검 보정 및 추가적인 자료수집을 통한 분석이 이루어지고, 매개변수 민감도 분석을 통한 국내 실정에 맞는 매개변수도출을 위한 연구가 계속적으로 수행된다면 미계측 유역에 대한 수공구조물의 적정설계에 상당부분 기여할 것으로 판단된다.

  • PDF

Microstructural Evolution and Properties in Ti(CN)-Co/Ni Cermet Depending on the Starting Material for Incorporation of WC (WC 첨가 방법에 따른 Ti(CN)-Co/Ni 계 서멧트의 미세조직 및 특성변화)

  • Chung, Tai-Joo;Ahn, Sun-Yong;Ahn, Seung-Su;Shin, Myung-Soo;Kim, Hak-Kyu;Kim, Kyung-Bae;Oh, Kyung-Sik;Lee, Hyuk-Jae
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.132-139
    • /
    • 2007
  • In the Ti(CN)-Co/Ni cermet, WC is an effective additive for increasing sinterability and mechanical properties such as toughness and hardness. In this work, WC, (WTi)C and (WTi)(CN) were used as the source of WC and their effects were investigated in the respect of microstructural evolution and mechanical properties. Regardless of the kinds of WC sources, the hard phase with dark core and bright rim structure was observed in the Ti(CN)-Co/Ni cermet under the incorporation of relatively small amount of WC. However, hard phases with bright core began to appear and their frequency increased with the increase of all kinds of WC source addition. The ratio of bright core to dark one in the (TiW)(CN)-Co/Ni cermet was greatest under the incorporation of (WTi)C compared at the same equivalent amount of WC. The mechanical properties were improved with the addition of WC irrespective of the kinds of sources, but the addition of (WTi)(CN) was less effective for the increase of fracture toughness.