• Title/Summary/Keyword: CMOS sensor

Search Result 521, Processing Time 0.042 seconds

Shading Correction Algorithm and CMOS Image Sensing System Design (쉐이딩 보정 알고리즘과 CMOS 이미지 센싱 시스템 설계)

  • Kim, Young Bin;Ryu, Conan K.R.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.1003-1006
    • /
    • 2012
  • The image correction algorithm and system design for CMOS sensor to enhance the image resolution is presented in this paper. The proposed algorithm finds out the image cell from the sensor and process them by the limited memory configuration. The evaluation of the method is done by the designed hardware system. The experimental results are capable of improving contrast per channel and of sensing equalized image quality on an edge of image.

  • PDF

CMOS Circuit Designs for High Frequency Oscillation Proximity Sensor IC System (고주파 발진형 근접 센서 시스템의 집적화를 위한 CMOS 회로 설계)

  • Sung, Jung-Woo;Choi, Pyung
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.46-53
    • /
    • 1994
  • In the following paper, the high frequency oscillation proximity sensor system, one of the sensor systems used in FA, is designed using CMOS. According to the proximity of metal objects, two differing amplitudes of sinusoidal waves are set, and by using rectifiers, dc voltages, which determine the constant current source circuit's output current levels, can be abstracted from these waves. To remove any disturbances in the dc voltage levels, a schmitt trigger is used. Some advantages of this CMOS high frequency oscillation proximity sensor are miniturization, light weight and low power disspation.

  • PDF

Development CMOS Sensor-Based Portable Video Scope and It's Image Processing Application (CMOS 센서를 이용한 휴대용 비디오스코프 및 영상처리 응용환경 개발)

  • 김상진;김기만;강진영;김영욱;백준기
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.517-520
    • /
    • 2003
  • Commercial video scope use CCD sensor and frame grabber for image capture and A/D interface but application limited by input resolution and high cost. In this paper we introduce portable video scope using CMOS sensor, USB pen and tuner card (low frame grabber) in place of commercial CCD sensor and frame grabber. Our video scope serves as an essential link between advancing commercial technology and research, providing cost effective solutions for educational, engineering and medical applications across an entire spectrum of needs. The software implementation is done using Direct Show in second version after initial trials using First version VFW (video for window), which gave very low frame rate. Our video scope operates on windows 98, ME, XP, 2000. The drawback of our video scope is crossover problem in output images caused due to interpolation, which has to be rectified for more efficient performance.

  • PDF

A Low Dark Current CMOS Image Sensor Pixel with a Photodiode Structure Enclosed by P-well

  • Han, Sang-Wook;Kim, Seong-Jin;Yoon, Eui-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.102-106
    • /
    • 2005
  • A low dark current CMOS image sensor (CIS) pixel without any process modification is developed. Dark current is mainly generated at the interface region of shallow trench isolation (STI) structure. Proposed pixel reduces the dark current effectively by separating the STI region from the photodiode junction using simple layout modification. Test sensor array that has both proposed and conventional pixels is fabricated using 0.18 m CMOS process and the characteristics of the sensor are measured. The result shows that the dark current of the proposed pixel is 0.93fA/pixel that is two times lower than the conventional design.

CMOS Temperature Sensor with Ring Oscillator for Mobile DRAM Self-refresh Control (링 오실레이터를 가진 CMOS 온도 센서)

  • Kim, Chan-kyung;Lee, Jae-Goo;Kong, Bai-Sun;Jun, Young-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.485-486
    • /
    • 2006
  • This paper proposes a novel low-cost CMOS temperature sensor for controlling the self-refresh period of a mobile DRAM. In this temperature sensor, ring oscillators composed of cascaded inverter stages are used to obtain the temperature of the chip. This method is highly area-efficient, simple and easy for IC implementation as compared to traditional temperature sensors based on analog bandgap reference circuits. The proposed CMOS temperature sensor was fabricated with 80 nm 3-metal DRAM process. It occupies a silicon area of only about less than $0.02\;mm^2$ at $10^{\circ}C$ resolution with under 5uW power consumption at 1 sample/s processing rate. This area is about 33% of conventional temperature sensor in mobile DRAM.

  • PDF

A CMOS active pixel sensor with embedded electronic shutter and A/D converter (전자식 셔터와 A/D 변환기가 내장된 CMOS 능동 픽셀 센서)

  • Yoon, Hyung-June;Park, Jae-Hyoun;Seo, Sang-Ho;Lee, Sung-Ho;Do, Mi-Young;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.272-277
    • /
    • 2005
  • A CMOS active pixel sensor has been designed and fabricated using standard 2-poly and 4-metal $0.35{\mu}m$ CMOS processing technology. The CMOS active pixel sensor has been made up of a unit pixel having a highly sensitive PMOSFET photo-detector and electronic shutters that can control the light exposure time to the PMOSFET photo-detector, correlated-double sampling (CDS) circuits, and an 8-bit two-step flash analog to digital converter (ADC) for digital output. This sensor can obtain a stable photo signal in a wide range of light intensity. It can be realized with a special function of an electronic shutter which controls the light exposure-time in the pixel. Moreover, this sensor had obtained the digital output using an embedded ADC for the system integration. The designed and fabricated image sensor has been implemented as a $128{\times}128$ pixel array. The area of the unit pixel is $7.60{\mu}m{\times}7.85{\mu}m$ and its fill factor is about 35 %.

A Design of Digital CMOS X-ray Image Sensor with $32{\times}32$ Pixel Array Using Photon Counting Type (포톤 계수 방식의 $32{\times}32$ 픽셀 어레이를 갖는 디지털 CMOS X-ray 이미지 센서 설계)

  • Sung, Kwan-Young;Kim, Tae-Ho;Hwang, Yoon-Geum;Jeon, Sung-Chae;Jin, Seung-Oh;Huh, Young;Ha, Pan-Bong;Park, Mu-Hun;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1235-1242
    • /
    • 2008
  • In this paper, x-ray image sensor of photon counting type having a $32{\times}32$ pixel array is designed with $0.18{\mu}m$ triple-well CMOS process. Each pixel of the designed image sensor has an area of loot $100{\times}100\;{\mu}m2$ and is composed of about 400 transistors. It has an open pad of an area of $50{\times}50{\mu}m2$ of CSA(charge Sensitive Amplifier) with x-ray detector through a bump bonding. To reduce layout size, self-biased folded cascode CMOS OP amp is used instead of folded cascode OP amp with voltage bias circuit at each single-pixel CSA, and 15-bit LFSR(Linear Feedback Shift Register) counter clock generator is proposed to remove short pulse which occurs from the clock before and after it enters the counting mode. And it is designed that sensor data can be read out of the sensor column by column using a column address decoder to reduce the maximum current of the CMOS x-ray image sensor in the readout mode.

High-Power Continuous-Wave Laser-Induced Damage to Complementary Metal-Oxide Semiconductor Image Sensor (고출력 CW 레이저에 의한 CMOS 영상 센서의 손상 분석)

  • Kim, Jin-Gyum;Choi, Sungho;Yoon, Sunghee;Jhang, Kyung-Young;Shin, Wan-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.105-109
    • /
    • 2015
  • This paper presents the results of an experimental analysis of the high-power laser (HPL)-induced damage to a complementary metal-oxide semiconductor (CMOS) image sensor. Although the laser-induced damages to metallic materials have been sufficiently investigated, the damages to electric-optic imaging systems, which are very sensitive to HPLs, have not been studied in detail. In this study, we experimentally analyzed the HPL-induced damages to a CMOS image sensor. A near-infrared continuous-wave (CW) fiber laser was used as the laser source. The influences of the irradiance and irradiation time on the permanent damages to a CMOS image sensor, such as the color error and breakdown, were investigated. The experimental results showed that the color error occurred first, and then the breakdown occurred with an increase in the irradiance and irradiation time. In particular, these damages were more affected by the irradiance than the irradiation time.

Digital CMOS Temperature Sensor Implemented using Switched-Capacitor Circuits

  • Son, Bich;Park, Byeong-Jun;Gu, Gwang-Hoe;Cho, Dae-Eun;Park, Hueon-Beom;Jeong, Hang-Geun
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.326-332
    • /
    • 2016
  • A novel CMOS temperature sensor with binary output is implemented by using fully differential switched-capacitor circuits for resistorless implementation of the temperature sensor core. Temperature sensing is based on the temperature characteristics of the pn diodes implemented by substrate pnp transistors fabricated using standard CMOS processes. The binary outputs are generated by using the charge-balance principle that eliminates the division operation of the PTAT voltage by the bandgap reference voltage. The chip was designed in a MagnaChip $0.35-{\mu}m$ CMOS process, and the designed circuit was verified using Spectre circuit simulations. The verified circuit was laid out in an area of $950{\mu}m{\times}557 {\mu}m$ and is currently under fabrication.

Fine Digital Sun Sensor Design and Analysis for STSAT-2 (과학기술위성 2호(STSAT-2)의 고 정밀 디지털 태양센서(FDSS) 설계 및 분석)

  • Rhee, Sung-Ho;Jang, Tae-Seong;Kim, Sae-Il;Lim, Jong-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.93-97
    • /
    • 2005
  • We have developed the FDSS (Fine Digital Sun Sensor) for the space technology of the STSAT-2 (Seience & Technology Satellite 2). The FDSS is firstly developed by using CMOS image sensor(CIS) in South Korea. The FDSS consists of the optics part, FPGA(Field Programable Gate Array) part, and MCU(Micro controller unit)part. This paper will focus on the optical characteristics of the optics part and describe the configuration of FDSS with the design of aperture. We also analyze the characteristic of optics about the pixel of the CMOS image sensor.