• Title/Summary/Keyword: CMOS Analog to Digital Converter

Search Result 203, Processing Time 0.03 seconds

10bit 50MS/s CMOS Pipeline Analog-Digital Converter (10bit 50MS/s CMOS 파이프라인 아날로그-디지털 변환기)

  • 김대용;김길수;김수원
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1197-1200
    • /
    • 2003
  • This paper presents A/D converter for the signal processing of infrared sensor and CMOS image sensor. The A/D converter designed in a 0.25um CMOS process provides a resolution of 10bits at a sampling rate of 50MS/s while dissipating 67mW at 2.5V supply voltage. This A/D converter is based on a pipeline architecture in which the number of bits converted per stage and the stage number are optimized to achieve the desired linearity and reduce power consumption as well. Simulation results show that the A/D converter using 1.5bit per stage MDAC with switched capacitors and dynamic comparators efficiently reduces the power consumption.

  • PDF

A 10-bit 10-MS/s SAR ADC with a Reference Driver (Reference Driver를 사용한 10비트 10MS/s 축차근사형 아날로그-디지털 변환기)

  • Son, Jisu;Lee, Han-Yeol;Kim, Yeong-Woong;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2317-2325
    • /
    • 2016
  • This paper presents a 10 bit successive approximation register (SAR) analog-to-digital converter (ADC) with a reference driver. The proposed SAR ADC consists of a capacitive digital-to-analog converter (CDAC), a comparator, a SAR logic, and a reference driver which improves the immunity to the power supply noise. The reference driver generates the reference voltages of 0.45 V and 1.35 V for the SAR ADC with an input voltage range of ${\pm}0.9V$. The SAR ADC is implemented using a $0.18-{\mu}m$ CMOS technology with a 1.8-V supply. The proposed SAR ADC including the reference driver almost maintains an input voltage range to be ${\pm}0.9V$ although the variation of supply voltage is +/- 200 mV. It consumes 5.32 mW at a sampling rate of 10 MS/s. The measured ENOB, DNL, and INL of the ADC are 9.11 bit, +0.60/-0.74 LSB, and +0.69/-0.65 LSB, respectively.

An 8-b 1GS/s Fractional Folding CMOS Analog-to-Digital Converter with an Arithmetic Digital Encoding Technique

  • Lee, Seongjoo;Lee, Jangwoo;Lee, Mun-Kyo;Nah, Sun-Phil;Song, Minkyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.473-481
    • /
    • 2013
  • A fractional folding analog-to-digital converter (ADC) with a novel arithmetic digital encoding technique is discussed. In order to reduce the asymmetry errors of the boundary conditions for the conventional folding ADC, a structure using an odd number of folding blocks and fractional folding rate is proposed. To implement the fractional technique, a new arithmetic digital encoding technique composed of a memory and an adder is described. Further, the coding errors generated by device mismatching and other external factors are minimized, since an iterating offset self-calibration technique is adopted with a digital error correction logic. A prototype 8-bit 1GS/s ADC has been fabricated using an 1.2V 0.13 um 1-poly 6-metal CMOS process. The effective chip area is $2.1mm^2$(ADC core : $1.4mm^2$, calibration engine : $0.7mm^2$), and the power consumption is 88 mW. The measured SNDR is 46.22 dB at the conversion rate of 1 GS/s. Both values of INL and DNL are within 1 LSB.

Implementation of Modified CMOS Flash AD Converter (수정된 CMOS 플래시 AD변환기 구현)

  • Kwon, Seung-Tag
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.549-550
    • /
    • 2008
  • This paper proposed and designed the modified flash analog-to-digital converter(ADC). The speed of new architecture is similar to conventional flash ADC but the die area consumption is much less due to reduce numbers of comparators. The circuits which are implemented in this paper is simulated with LT SPICE and layout with Electric tools of computer.

  • PDF

Monolithic and Resolution with design of 10bit Current output Type Digital-to-Analog Converter (개선된 선형성과 해상도를 가진 10비트 전류 출력형 디지털-아날로그 변환기의 설계)

  • Song, Jun-Gue;Shin, Gun-Soon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.187-191
    • /
    • 2007
  • This paper describes a 3.3V 10 bit CMOS digital-to-analog converter with a divided architecture of a 7 MSB and a 3 LSB, which uses an optimal Thermal-to-Binary Decoding method with monotonicity, glitch energy. The output stage utilizes here implements a return-to-zero circuit to obtain the dynamic performance. Most of D/A converters in decoding circuit is complicated, occupies a large chip area. For these problems, this paper describes a D/A converter using an optimal Thermal-to-Binary Decoding method. the designed D/A converter using the CMOS n-well $0.35{\mu}m$ process0. The experimental data shows that the rise/fall time, settling time, and INL/DNL are 1.90ns/2.0ns, 12.79ns, and a less than ${\pm}2.5/{\pm}0.7$ LSB, respectively. The power dissipation of the D/A converter with a single power supply of 3.3V is about 250mW.

  • PDF

A Design of 10bit current output Type Digital-to-Analog converter with self-Calibration Techique for high Resolution (고해상도를 위한 DAC 오차 보정법을 가진 10-비트 전류 출력형 디지털-아날로그 변환기 설계)

  • Song, Jung-Gue;Shin, Gun-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.691-698
    • /
    • 2008
  • This paper describes a 3.3V 10 bit CMOS digital-to-analog converter with a divided architecture of a 7 MSB and a 3 LSB, which uses an optimal Thermal-to-Binary Decoding method with monotonicity, glitch energy. The output stage utilizes here implements a return-to-zero circuit to obtain the dynamic performance. Most of D/A converters in decoding circuit is complicated, occupies a large chip area. For these problems, this paper describes a D/A converter using an optimal Thermal-to-Binary Decoding method. the designed D/A converter using the CMOS n-well $0.35{\mu}m$ process0. The experimental data shows that the rise/fall time, settling time, and INL/DNL are 1.90ns/2.0ns, 12.79ns, and a less than ${\pm}2.5/{\pm}0.7\;LSB$, respectively. The power dissipation of the D/A converter with a single power supply of 3.3V is about 250mW.

A Low-Noise and Small-Size DC Reference Circuit for High Speed CMOS A/D Converters

  • Hwang, Sang-Hoon;Song, Min-Kyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.1
    • /
    • pp.43-50
    • /
    • 2007
  • In a high-speed flash style or a pipelining style analog-to-digital converter (A/D converter), the DC reference fluctuation caused by external noises becomes serious, as the sampling frequency is increased. To reduce the fluctuations in conventional A/D converters, capacitors have been simply used, but the layout area was large. Instead of capacitors, a low-noise and small-size DC reference circuit based on transmission gate (TG) is proposed in this paper. In order to verify the proposed technique, we designed and manufactured a 6-bit 2GSPS CMOS A/D converter. The A/D converter is designed with a 0.18um 1-poly 6-metal n-well CMOS technology, and it consumes 145mW at 1.8V power supply. It occupies the chip area of 977um by 1040um. The measured result shows that SNDR is 36.25 dB and INL/DNL is within 0.5LSB, even though the DC reference fluctuation is serious.

Design of an 8 bit CMOS low power and high-speed current-mode folding and interpolation A/D converter (8비트 저전력 고속 전류구동 폴딩.인터폴레이션 CMOS A/D 변환기 설계)

  • 김경민;윤황섭
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.6
    • /
    • pp.58-70
    • /
    • 1997
  • In this paper, an 8bit CMOS low power, high-speed current-mode folding and interpolation A/D converter is designed with te LG semicon $0.8\mu\textrm{m}$ N-well single-poly/double-metal CMOS process to be integrated into a portable image signal processing system such as a digital camcoder. For good linearity and low power consumption, folding amplifiers and for high speed performance of the A/D converter, analog circuitries including folding block, current-mode interpolation circuit and current comparator are designed as a differential-mode. The fabricated 8 bit A/D converter occupies the active chip area of TEX>$2.2mm \times 1.6mm$ and shows DNL of $\pm0.2LSB$, INL of <$\pm0.5LSB$, conversion rate of 40M samples/s, and the measured maximum power dissipation of 33.6mW at single +5V supply voltage.

  • PDF

An Architecture Design of a Multi-Stage 12-bit High-Speed Pipelined A/D Converter (다단 12-비트 고속 파이프라인 A/D 변환기의 구조 설계)

  • 임신일;이승훈
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.220-228
    • /
    • 1995
  • An optimized 4-stage 12-bit pipelined CMOS analog-to-digital converter (ADC) architecture is proposed to obtain high linearity and high yield. The ADC based on a multiplying digital-to-analog converter (MDAC) selectively employs a binary-weighted-capacitor (BWC) array in the front-end stage and a unit-capacitor (UC) array in the back-end stages to improve integral nonlinearity (INL) and differential nonlinearity (DNL) simultaneously whil maintaining high yield. A digital-domain nonlinear error calibration technique is applied in the first stage of the ADC to improve its accuracy to 12-bit level. The largest DNL error in the mid-point code of the ADC is reduced by avoiding a code-error symmetry observed in a conventional digitally calibrated ADC is reduced by avoiding a code-error symmetry observed in a conventional digitally calibrated ADC is simulated to prove the effectiveness of the proposed ADC architecture.

  • PDF

A 10-Bit 210MHz CMOS D/A Converter (WLAN용 10bit 210MHz CMOS D/A 변환기 설계)

  • Cho, Hyun-Ho;Yoon, Kwang-Sub
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.61-66
    • /
    • 2005
  • This paper describes a 10-bit 210MHz CMOS current-mode Digital-to-Analog Converter (DAC) consisting of 6 bit MSB current cell matrix Sub-DAC, 2 bit mSB unary current source Sub-DAC, and 2 bit LSB binary weighting Sub-DAC for Wireless LAN application. A new deglitch circuit is proposed to control a crossing point of signals and minimize a glitch energy. The proposed 10-bit CMOS current mode DAC was designed by a $0.35{\mu}m$ CMOS double-poly four-metal technology rate of 210MHz, DNL/INL of ${\pm}0.7LSB/{\pm}1.1LSB$, a glitch energy of $76pV{\cdot}sec$, a SNR of 50dB, a SFDR of 53dB at 200MHz sampling clock and power dissipation of 83mW at 3.3V