• 제목/요약/키워드: CMOS회로

검색결과 1,146건 처리시간 0.034초

DC-DC Boost Converter with Dead-Time Adaptive Control and Power Switching (Dead-Time 적응제어 기능과 Power Switching 기능을 갖는 DC-DC 부스트 변환기)

  • Lee, Joo-young;Yang, Min-jae;Kim, Doo-Hoi;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.361-364
    • /
    • 2013
  • Since the non-overlapping gate driver used in conventional DC-DC boost converters generates fixed dead-times, the converters suffer from the body-diode conduction loss or the charge-sharing loss. A adaptive control method has been proposed to reduce these loses. In this method, however, occurrence of and overlapping time of two power transistors in CCM results in reduction of efficiency. In this paper, to overcome this problem a new adaptive control method in proposed, and a DC-DC boost converter with the proposed adaptive control and power switching has been designed in a 0.35um CMOS process. The designed converter outputs 3.3V from a input voltage of 2.5V. The switching frequency is 500kHz and the maximum power efficiency is 95.3% at a load current 150mA. The designed chip area is $1720um{\times}1280um$.

  • PDF

Open-Loop Pipeline ADC Design Techniques for High Speed & Low Power Consumption (고속 저전력 동작을 위한 개방형 파이프라인 ADC 설계 기법)

  • Kim Shinhoo;Kim Yunjeong;Youn Jaeyoun;Lim Shin-ll;Kang Sung-Mo;Kim Suki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제30권1A호
    • /
    • pp.104-112
    • /
    • 2005
  • Some design techniques for high speed and low power pipelined 8-bit ADC are described. To perform high-speed operation with relatively low power consumption, open loop architecture is adopted, while closed loop architecture (with MDAC) is used in conventional pipeline ADC. A distributed track and hold amplifier and a cascading structure are also adopted to increase the sampling rate. To reduce the power consumption and the die area, the number of amplifiers in each stage are optimized and reduced with proposed zero-crossing point generation method. At 500-MHz sampling rate, simulation results show that the power consumption is 210mW including digital logic with 1.8V power supply. And the targeted ADC achieves ENOB of about 8-bit with input frequency up to 200-MHz and input range of 1.2Vpp (Differential). The ADC is designed using a $0.18{\mu}m$ 6-Metal 1-Poly CMOS process and occupies an area of $900{\mu}m{\times}500{\mu}m$

AES-128/192/256 Rijndael Cryptoprocessor with On-the-fly Key Scheduler (On-the-fly 키 스케줄러를 갖는 AED-128/192/256 Rijndael 암호 프로세서)

  • Ahn, Ha-Kee;Shin, Kyung-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • 제39권11호
    • /
    • pp.33-43
    • /
    • 2002
  • This paper describes a design of cryptographic processor that implements the AES (Advanced Encryption Standard) block cipher algorithm "Rijndael". To achieve high throughput rate, a sub-pipeline stage is inserted into a round transformation block, resulting that two consecutive round functions are simultaneously operated. For area-efficient and low-power implementation, the round transformation block is designed to share the hardware resources for encryption and decryption. An efficient on-the-fly key scheduler is devised to supports the three master-key lengths of 128-b/192-b/256-b, and it generates round keys in the first sub-pipeline stage of each round processing. The Verilog-HDL model of the cryptoprocessor was verified using Xilinx FPGA board and test system. The core synthesized using 0.35-${\mu}m$ CMOS cell library consists of about 25,000 gates. Simulation results show that it has a throughput of about 520-Mbits/sec with 220-MHz clock frequency at 2.5-V supply.

Stacked Interleaved Buck DC-DC Converter With 50MHz Switching Frequency (Stacked Interleaved 방식의 50MHz 스위칭 주파수의 벅 변환기)

  • Kim, Young-Jae;Nam, Hyun-Seok;Ahn, Young-Kook;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • 제46권6호
    • /
    • pp.16-24
    • /
    • 2009
  • In this paper, DC-DC buck converter with on-chip filter inductor and capacitor is presented. By operating at high switching frequency of 50MHz with stacked interleaved topology, we reduced inductor and capacitor sizes compared to previously published DC-DC buck converters. The proposed circuit is designed in a standard $0.5{\mu}m$ CMOS process, and chip area is $9mm^2$. This circuit operated at the input voltage of $3{\sim}5V$ range, the maximum load current of 250mA, and the maximum efficiency of 71%.

A Low Complex and Low Power Baseband IR-UWB Transceiver for Wireless Sensor Network (무선 센서 네트워크 응용을 위한 초광대역 임펄스 통신용 저복잡도, 저전력 베이스밴드 트랜시버)

  • Lee, Soon-Woo;Park, Young-Jin;Kang, Ji-Myung;Kim, Young-Hwa;Kim, Kwan-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제45권7호
    • /
    • pp.38-44
    • /
    • 2008
  • In this paper, we introduce an low complexity and low power IR-UWB (impulse radio ultra wideband) baseband transceiver for wireless sensor network. The proposed baseband, implemented by TSMC 0.18um CMOS technology, has a simple structure in which a simplified packet structure and a digital synchronizer with 1-bit sampler to detect incoming pulses are used. Besides, clock gating method using gated clock cell as well as customized clock domain division can reduce the total power consumption drastically. As a result, the proposed baseband has about 23K digital gates with an internal memory of 2Kbytes and achieves about 1.8mW@1Mbps power consumption.

Implementation of a Shared Buffer ATM Switch Embedded Scalable Pipelined Buffer Memory (가변형 파이프라인방식 메모리를 내장한 공유버퍼 ATM 스위치의 구현)

  • 정갑중
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제6권5호
    • /
    • pp.703-717
    • /
    • 2002
  • This paper illustrates the implementation of a scalable shared buffer asynchronous transfer mode (ATM) switch. The designed shared buffer ATM switch has a shared buffet of a pipelined memory which has the access time of 4 ns. The high-speed buffer access time supports a possibility of the implementation of a shared buffer ATM switch which has a large switching capacity. The designed switch architecture provides flexible switching performance and port size scalability with the independence of queue address control from buffer memory control. The switch size and the buffer size of the designed ATM switch can be reconfigured without serious circuit redesign. The designed prototype chip has a shared buffer of 128-cell and 4 ${\times}$ 4 switch size. It is integrated in 0.6um, double-metal, and single-poly CMOS technology. It has 80MHz operating frequency and supports 640Mbps per port.

Design of a Wide Tuning Range DCO for Mobile-DTV Applications (Mobile-DTV 응용을 위한 광대역 DCO 설계)

  • Song, Sung-Gun;Park, Sung-Mo
    • Journal of Korea Multimedia Society
    • /
    • 제14권5호
    • /
    • pp.614-621
    • /
    • 2011
  • This paper presents design of a wide tuning range digitally controlled oscillator(DCO) for Mobile-DTV applications. DCO is the key element of the ADPLL block that generates oscillation frequencies. We proposed a binary delay chain(BDC) structure, for wide tuning range DCO, modifying conventional fixed delay chain. The proposed structure generates oscillation frequencies by delay cell combination which has a variable delay time of $2^i$ in the range of $0{\leq}i{\leq}n-1$. The BOC structure can reduce the number of delay cells because it make possible to select delay cell and resolution. We simulated the proposed DCO by Cadence's Spectre RF tool in 1.8V chartered $0.18{\mu}m$ CMOS process. The simulation results showed 77MHz~2.07GHz frequency range and 3ps resolution. The phase noise yields -101dBc/Hz@1MHz at Mobile-DTV maximum frequency 1675MHz and the power consumption is 5.87mW. The proposed DCO satisfies Mobile-DTV standards such as ATSC-M/H, DVB-H, ISDB-T, T-DMB.

Low-Energy Intra-Task Voltage Scheduling using Static Timing Analysis (정적 시간 분석을 이용한 저전력 태스크내 전압 스케줄링)

  • Sin, Dong-Gun;Kim, Ji-Hong;Lee, Seong-Su
    • Journal of KIISE:Computer Systems and Theory
    • /
    • 제28권11호
    • /
    • pp.561-572
    • /
    • 2001
  • Since energy consumption of CMOS circuits has a quadratic dependency on the supply voltage, lowering the supply voltage is the most effective way of reducing energy consumption. We propose an intra-task voltage scheduling algorithm for low-energy hard real-time applications. Based on a static timing analysis technique, the proposed algorithm controls the supply voltage within an individual task boundary. By fully exploiting all the slack times, as scheduled program by the proposed algorithm always complete its execution near the deadline, thus achieving a high energy reduction ratio. In order to validate the effectiveness of the proposed algorithm, we built a software tool that automatically converts a DVS-unaware program into an equivalent low-energy program. Experimental results show that the low-energy version of an MPEG-4 encoder/decoder (converted by the software tool) consumes less than 7~25% of the original program running on a fixed-voltage system with a power-down mode.

  • PDF

Design of ZQ Calibration Circuit using Time domain Comparator (시간영역 비교기를 이용한 ZQ 보정회로 설계)

  • Lee, Sang-Hun;Lee, Won-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제16권3호
    • /
    • pp.417-422
    • /
    • 2021
  • In this paper, a ZQ calibration using a time domain comparator is proposed. The proposed comparator is designed based on VCO, and an additional clock generator is used to reduce power consumption. By using the proposed comparator, the reference voltage and the PAD voltage were compared with a low 1 LSB voltage, so that the additional offset cancelation process could be omitted. The proposed time domain comparator-based ZQ calibration circuit was designed with a 65nm CMOS process with 1.05V and 0.5V supply voltages. The proposed clock generator reduces power consumption by 37% compared to a single time domain comparator, and the proposed ZQ calibration increases the mask margin by up to 67.4%.

Design of Subthreshold SRAM Array utilizing Advanced Memory Cell (개선된 메모리 셀을 활용한 문턱전압 이하 스태틱 램 어레이 설계)

  • Kim, Taehoon;Chung, Yeonbae
    • Journal of IKEEE
    • /
    • 제23권3호
    • /
    • pp.954-961
    • /
    • 2019
  • This paper suggests an advanced 8T SRAM which can operate properly in subthreshold voltage regime. The memory cell consists of symmetric 8 transistors, in which the latch storing data is controlled by a column-wise assistline. During the read, the data storage nodes are temporarily decoupled from the read path, thus eliminating the read disturbance. Additionally, the cell keeps the noise-vulnerable 'low' node close to the ground, thereby improving the dummy-read stability. In the write, the boosted wordline facilitates to change the contents of the memory bit. At 0.4 V supply, the advanced 8T cell achieves 65% higher dummy-read stability and 3.7 times better write-ability compared to the commercialized 8T cell. The proposed cell and circuit techniques have been verified in a 16-kbit SRAM array designed with an industrial 180-nm low-power CMOS process.