• 제목/요약/키워드: CMEs

검색결과 116건 처리시간 0.029초

Estimation of CME 3-D parameters using a full ice-cream cone model

  • Na, Hyeonock;Moon, Yong-Jae
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.62.1-62.1
    • /
    • 2017
  • In space weather forecast, it is important to determine three-dimensional properties of CMEs. Using 29 limb CMEs, we examine which cone type is close to a CME three-dimensional structure. We find that most CMEs have near full ice-cream cone structure which is a symmetrical circular cone combined with a hemisphere. We develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model). In addition, we derive CME mean density (${\bar{\rho}_{CME}}={\frac{M_{total}}{V_{cone}}}$) based on the full ice-cream cone structure. For several limb events, we determine CME mass by applying the Solarsoft procedure (e.g., cme_mass.pro) to SOHO/LASCO C3 images. CME volumes are estimated from the full ice-cream cone structure. For the first time, we derive average CME densities as a function of CME height for several CMEs, which are well fitted to power-law functions. We will compare densities (front and average) of geoeffective CMEs and their corresponding ICME ones.

  • PDF

Low ionization state plasma in CMEs

  • 이진이
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.115.1-115.1
    • /
    • 2012
  • The Ultraviolet Coronagraph Spectrometer on board the Solar and Heliospheric Observatory (SOHO) observes low ionization state coronal mass ejection plasma at ultraviolet wavelengths. The CME plasmas are often detected in O VI ($3{\times}10^5K$), C III ($8{\times}10^4K$), $Ly{\alpha}$, and $Ly{\beta}$. Earlier in situ observations by the Solar Wind Ion Composition Spectrometer (SWICS) on board Advanced Composition Explorer (ACE) have shown mostly high ionization state plasmas in interplanetary coronal mass ejections (ICME) events, which implies that most CME plasma is strongly heated during its expansion in solar corona. In this analysis, we investigate whether the low ionization state CME plasmas observed by UVCS occupy small enough fractions of the CME volume to be consistent with the small fraction of ICMEs measured by ACE that show low ionization plasma, or whether the CME must be further ionized after passing the UVCS slit. To do this, we determine the covering factors of low ionization state plasma for 10 CME events. We find that the low ionization state plasmas in CMEs observed by UVCS show small covering factors. This result shows that the high ionization state ICME plasmas observed by the ACE results from a small filling factor of cool plasma. We also find that the low ionization state plasma volumes in faster CMEs are smaller than in slower CMEs. Most slow CMEs in this analysis are associated with a prominence eruption, while the faster CMEs are associated with X-class flares.

  • PDF

STUDY OF MAGNETIC HELICITY IN SOLAR ACTIVE REGIONS AND ITS RELATIONSHIP WITH SOLAR ERUPTIONS

  • 박성홍
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.36.1-36.1
    • /
    • 2011
  • It is generally believed that eruptive phenomena in the solar atmosphere such as solar flares and coronal mass ejections (CMEs) occur in the solar active regions with complex magnetic structures. Magnetic helicity has been recognized as a useful parameter to measure the complexity such as twists, kinks, and inter-linkages of magnetic field lines. The objective of this study is to understand a long-term (a few days) variation of magnetic helicity in active regions and its relationship with the energy buildup and instability leading to flares and CMEs. Statistical studies of flare productivity and magnetic helicity injection in about 400 active regions were carried out. The temporal variation of magnetic helicity injected through the photosphere of active regions was also examined related to 46 CMEs. The main findings in this study are as follows: (1) the study of magnetic helicity for active regions producing major flares and CMEs indicates that there is always a significant helicity injection through the active-region photosphere over a long period of 0.5 - a few days before the flares and CMEs; (2) for the 30 CMEs under investigation, it is found that there is a fairly good correlation (linear correlation coefficient of 0.71) between the average helicity injection in the CME-productive active regions and the CME speed. Beside the scientific contribution, a major impact of this study is the observational discovery of a characteristic variation pattern of magnetic helicity injection in flare/CME-productive active regions which can be used for the improvement of solar eruption forecasting.

  • PDF

다중 위성 관측을 이용한 CME 전파 과정에 대한 연구 (PROPAGATION OF CME IN MULTI-SATELLITE OBSERVATIONS)

  • 성숙경;이동훈
    • Journal of Astronomy and Space Sciences
    • /
    • 제15권2호
    • /
    • pp.307-320
    • /
    • 1998
  • 다중 위성 관측을 이용하여 지구 근처에서의 태양물질 방출현상(CME: Coronal Mass Ejection)의 전파 속도와 방향에 대하여 조사하였다. 이를 위해 1994년 11월까지 지구에 영향을 미친 CME 중에서 세 개 이상의 위성에서 관측되고 각 위성들이 충분한 거리를 두고 떨어져 있는 1997년 1월 6-11일과 1997년 11월 4-7일의 두 CME 자료를 선택하였다. 위성들의 위치를 공통 좌표 계로 전환하여 위성간의 거리와 CME에 의한 물리량의 변화 시간을 조사하여 CME의 전파 방향과 속도를 계산하였다. 선택된 자료에 대한 조사 결과 지구 자기권 내부에서 CME 전파 속도가 급격히 줄어들었으며 또한 자기권 외부에서의 CME 전파 방향이 GSE 좌표계상의 -x 방향과 일치함을 알 수 있었다.

  • PDF

A NEW METHOD TO DETERMINE THE TEMPERATURE OF CMES USING A CORONAGRAPH FILTER SYSTEM

  • CHO, KYUHYOUN;CHAE, JONGCHUL;LIM, EUN-KYUNG;CHO, KYUNG-SUK;BONG, SU-CHAN;YANG, HEESU
    • 천문학회지
    • /
    • 제49권1호
    • /
    • pp.45-51
    • /
    • 2016
  • The coronagraph is an instrument that enables the investigation of faint features in the vicinity of the Sun, particularly coronal mass ejections (CMEs). So far coronagraphic observations have been mainly used to determine the geometric and kinematic parameters of CMEs. Here, we introduce a new method for the determination of CME temperature using a two filter (4025 Å and 3934 Å) coronagraph system. The thermal motion of free electrons in CMEs broadens the absorption lines in the optical spectra that are produced by the Thomson scattering of visible light originating in the photosphere, which affects the intensity ratio at two different wavelengths. Thus the CME temperature can be inferred from the intensity ratio measured by the two filter coronagraph system. We demonstrate the method by invoking the graduated cylindrical shell (GCS) model for the 3-dimensional CME density distribution and discuss its significance.

Statistical study on the kinematic distribustion of coronal mass ejections from 1996 to 2015

  • Jeon, Seong-Gyeong;Moon, Yong-Jae;Yi, Kangwoo;Lee, Harim
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.61.4-62
    • /
    • 2017
  • In this study we have made a statistical investigation on the kinematic classification of coronal mass ejections (CMEs) using about 4,000 SOHO/LASCO CMEs from 1996 to 2015. For this we use their SOHO/LASCO C3 data and exclude all poor events. Using the constant acceleration model, we classify these CMEs into three groups: Acceleration group, Constant Velocity group, and Deceleration group. For classification we adopt four different methods: Acceleration method, Velocity Variation method, Height Contribution method, and Visual Inspection method. Our major results are as follows. First, the fractions of three groups depend on the method used. Second, the results of the Height Contribution method are most consistent with those of the Visual Inspection method, which is thought to be most promising. Third, the fractions of different kinematic groups for the Height contribution method are: Acceleration (35%), Constant speed (47%), and Deceleration (18%). Fourth, the fraction strongly depend on CME speed; the fraction of Acceleration decreases from 0.6 to 0.05 with CME speed; the fraction of Constant increases from 0.3 to 0.7; the fraction of Deceleration increases from 0.1 to 0.3. Finally we present dozens of CMEs with non-constant accelerations. It is found that about 40 % of these CMEs show quasi-periodic oscillations.

  • PDF

Statistical study on the kinematic classification of CMEs from 4 to 30 solar radii

  • Jeo, Seong-Gyeong;Moon, Yong-Jae;Cho, Il-Hyun;Lee, Harim;Yi, Kangwoo
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.54.3-54.3
    • /
    • 2018
  • In this study, we perform a statistical investigation on the kinematic classication of 4264 coronal mass ejections (CMEs) from 1996 to 2015 observed by SOHO/LASCO C3. Using the constant acceleration model, we classify these CMEs into three groups; deceleration, constant velocity, and acceleration motion. For this, we devise four dierent classication methods by acceleration, fractional speed variation, height contribution, and visual inspection. Our major results are as follows. First, the fractions of three groups depend on the method used. Second, about half of the events belong to the groups of acceleration and deceleration. Third, the fractions of three motion groups as a function of CME speed classied by the last three methods are consistent with one another. Fourth, according to the last three methods, the fraction of acceleration motion decreases as CME speed increases, while the fractions of other motions increase with speed. In addition, the acceleration motions are dominant in low speed CMEs whereas the constant velocity motions are dominant in high speed CMEs.

  • PDF

SVM을 이용한 지구에 영향을 미치는 Halo CME 예보

  • 최성환;문용재;박영득
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.61.1-61.1
    • /
    • 2013
  • In this study we apply Support Vector Machine (SVM) to the prediction of geo-effective halo coronal mass ejections (CMEs). The SVM, which is one of machine learning algorithms, is used for the purpose of classification and regression analysis. We use halo and partial halo CMEs from January 1996 to April 2010 in the SOHO/LASCO CME Catalog for training and prediction. And we also use their associated X-ray flare classes to identify front-side halo CMEs (stronger than B1 class), and the Dst index to determine geo-effective halo CMEs (stronger than -50 nT). The combinations of the speed and the angular width of CMEs, and their associated X-ray classes are used for input features of the SVM. We make an attempt to find the best model by using cross-validation which is processed by changing kernel functions of the SVM and their parameters. As a result we obtain statistical parameters for the best model by using the speed of CME and its associated X-ray flare class as input features of the SVM: Accuracy=0.66, PODy=0.76, PODn=0.49, FAR=0.72, Bias=1.06, CSI=0.59, TSS=0.25. The performance of the statistical parameters by applying the SVM is much better than those from the simple classifications based on constant classifiers.

  • PDF

Relationship between solar flares and halo CMEs using stereoscopic observations

  • Jang, Soojeong;Moon, Yong-Jae;Kim, Sujin;Kim, Rok-Soon
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.82-82
    • /
    • 2016
  • To find the relationship between solar flares and halo CMEs using stereoscopic observations, we investigate 182 flare-associated halo CMEs among 306 front-side halo CMEs from 2009 to 2013. We have determined the 3D parameters (radial speed and angular width) of these CMEs by applying StereoCAT to multi-spacecraft data (SOHO and STEREO). For this work, we use flare parameters (peak flux and fluence) taken from GOES X-ray flare list and 2D CME parameters (projected speed, apparent angular width, and kinetic energy) taken from CDAW SOHO LASCO CME catalog. Major results from this study are as follows. First, the relationship between flare peak flux (or fluence) and CME speed is almost same for both 2D and 3D cases. Second, there is a possible correlation between flare fluence and CME width, which is more evident in 3D case than 2D one. Third, the flare fluence is well correlated with CME kinetic energy (CC=0.63). Fourth, there is an upper limit of CME kinetic energy for a given flare fluence (or peak flux). For example, a possible CME kinetic energy ranges from 1030.6 to 1033 erg for a given X1.0 class flare. Our results will be discussed in view of the physical mechanism of solar eruptions.

  • PDF