Estimation of CME 3-D parameters using a full ice-cream cone model

  • Published : 2017.10.10

Abstract

In space weather forecast, it is important to determine three-dimensional properties of CMEs. Using 29 limb CMEs, we examine which cone type is close to a CME three-dimensional structure. We find that most CMEs have near full ice-cream cone structure which is a symmetrical circular cone combined with a hemisphere. We develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model). In addition, we derive CME mean density (${\bar{\rho}_{CME}}={\frac{M_{total}}{V_{cone}}}$) based on the full ice-cream cone structure. For several limb events, we determine CME mass by applying the Solarsoft procedure (e.g., cme_mass.pro) to SOHO/LASCO C3 images. CME volumes are estimated from the full ice-cream cone structure. For the first time, we derive average CME densities as a function of CME height for several CMEs, which are well fitted to power-law functions. We will compare densities (front and average) of geoeffective CMEs and their corresponding ICME ones.

Keywords