• Title/Summary/Keyword: CMELDC

Search Result 13, Processing Time 0.016 seconds

Nodal Probabilistic Production Cost Evaluation using Monte Carlo Simulation Methods (Monte Carlo Simulation을 이용한 각 부하지점별 확률론적 발전비산정)

  • Mun, Seung-Pil;Kim, Hong-Sik;Choe, Jae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.9
    • /
    • pp.425-432
    • /
    • 2002
  • This Paper illustrates a method for evaluating nodal probabilistic production cost using the CMELDC. A new method for constructing CMELDC(CoMposite Power System Equivalent Load Duration Curve) has been developed by authors. The CMELDC can be obtained by convolution integral processing between the probability distribution functions of the fictitious generators outage capacity and the load duration curves at each load point. In general, if complex operating conditions are involved and/or the number of severe events is relatively large, Monte Carlo methods are more efficient. Because of that reason, Monte Carlo Methods are applied for the construction of CMELDC in this study. And IEEE-RTS 24 buses model is used as our case study with satisfactory results.

Development of a New Numerical Analysis Method for Nodal Probabilistic Production Cost Simulation (각 부하지점별 확률론적 발전비용 산정을 위한 수치해석적 방법의 개발)

  • Kim, Hong-Sik;Mun, Seung-Pil;Choe, Jae-Seok;No, Dae-Seok;Cha, Jun-Min
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.9
    • /
    • pp.431-439
    • /
    • 2001
  • This Paper illustrates a new numerical analysis method using a nodal effective load model for nodal probabilistic production cost simulation of the load point in a composite power system. The new effective load model includes capacities and uncertainties of generators as well as transmission lines. The CMELDC(composite power system effective load duration curve) based on the new effective load model at HLll(Hierarchical Level H) has been developed also. The CMELDC can be obtained from convolution integral processing of the outage capacity probabilistic distribution function of the fictitious generator and the original load duration curve given at the load point. It is expected that the new model for the CMELDC proposed in this study will provide some solutions to many problems based on nodal and decentralized operation and control of an electric power systems under competition environment in future. The CMELDC based on the new model at HLll will extend the application areas of nodal probabilistic production cost simulation, outage cost assessment and reliability evaluation etc. at load points. The characteristics and effectiveness of this new model are illustrated by a case study of MRBTS(Modified Roy Billinton Test System).

  • PDF

A Nodal Probabilistic Production Cost Evaluation at each Load Point using Monte Carlo Simulation Methods (Monte Carlo Simulation을 이용한 각 부하지점별 확률론적 발전비산정)

  • Moon, Seung-Pil;Kim, Hong-Sik;Choi, Hyong-Lim;Choi, Jae-Seok;Rho, Dae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.530-532
    • /
    • 2001
  • This paper illustrates a method for evaluating nodal probabilistic production cost using the CMELDC. A new method for constructing CMELDC(the equivalent load duration curves of composite power system) was developed by authors. The CMELDC can be obtained by convolution integral processing between the probability distribution functions of the fictitious generators outage capacity and the load duration curves at each load point. Monte Carlo Methods are applied for the construction of CMELDC on this study. And IEEE-RTS 24 buses model is used as our case study with satisfactory results.

  • PDF

A Study on Construction of the CMELDC at Load Points (각 부하지점별 유효부하지속곡선 작성법에 관한 연구)

  • Kim, Hong-Sik;Mun, Seung-Pil;Choe, Jae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.195-198
    • /
    • 2000
  • This paper illustrates a new method for constructing composite power system effective load duration curve(CMELDC) at load points. The main concept of proposed method is that the CMELDC can be obtain from convolution integral processing of the outage probabilistic distribution function of not supplied power and the load duration curve given at each load point. The effective load duration curve (ELDC) at HLI plays an important part in probabilistic production simulation, reliability evaluation, outage cost assessment and power supply margins assesment for power system planning and operation. And also, the CMELDC at HLII will extend the application areas of outage cost assessment and reliability evaluation at each load point. The CMELDC at load points using the Monte Carlo method and a DC load flow constrained LP have already been developed by authors. The effective load concept at HLII, however, has not been introduced sufficiently in last paper although the concept is important. In this paper, the main concept of the effective load at HLII which is proposed in this study is defined in details as the summation of the original load and the probabilistic loads caused by the forced outage of generators and transmission lines at this load point. The outage capacity probabilistic distribution function at HLII can be obtained by combining the not supplied powers and the probabilities of the not supplied powers at this load point. It si also expected that the proposed CMELDC can be applied usefully to research areas such as reliability evaluation, probabilistic production cost simulation and analytical outage cost assessment, etc. at HLII in future. The characteristics and effectiveness of this methodology are illustrated by case study of IEEE-RTS.

  • PDF

Numerical Analysis Method for Nodal Probabilistic Production Cost Simulation (각 부하지점별 확률론적 발전비용 산정을 위한 수치해석적 방법)

  • Kim, Hong-Sik;Moon, Seung-Pil;Choi, Jae-Seok;Rho, Dae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.112-115
    • /
    • 2001
  • This paper illustrates a new nodal effective load model for nodal probabilistic production cost simulation of the load point in a composite power system. The new effective load model includes capacities and uncertainties of generators as well as transmission lines. The CMELDC based on the new effective load model at HLII has been developed also. The CMELDC can be obtain from convolution integral processing of the outage capacity probabilistic distribution function of the fictitious generator and the original load duration curve given at the load point. It is expected that the new model for the CMELDC proposed. In this study will provide some solutions to many problems based on nodal and decentralized operation and control of an electric power systems under competition environment in future. The CMELDC based on the new model at HLII will extend the application areas of nodal probabilistic production cost simulation, outage cost assessment and reliability evaluation etc. at load points. The characteristics and effectiveness of this new model are illustrated by a case study of a test system.

  • PDF

Development of the ELDC and Reliability Analysis of Composite Power System by Monte Carlo Method (Monte Carlo법에 의한 복합전력계통의 유효부하지속곡선 작성법 및 개발 및 신뢰도 해석)

  • Moon, Seung-Pil;Choi, Jae-Seok;Shin, Heung-Kyo;Lee, Sun-Young;Song, Kil-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.508-516
    • /
    • 1999
  • This paper presents a method for constructing composite power system effective load duration curves(CMELDC) at load points by Monte Carlo method. The concept of effective load duration curves(ELDC) in power system planning is useful and important in both HLII. CMELDC can be obtained from convolution integral processing of the probability function of unsupplied power and the load duration curve at each load point. This concept is analogy to the ELEC in HLI. And, the reliability indices (LOLP, EDNS) for composite power system are evaluated using CMELDC. Differences in reliability levels between HLI and HLII come from considering with the uncertainty associated with the outages of the transmission system. It is expected that the CMELDC can be applied usefully to areas such as reliability evaluation, probabilistic production cost simulation and analytical outage cost assessment, etc. in HLII, DC load flow and Monte Carlo method are used for this study. The characteristics and effectiveness of thes methodology are illustrated by a case study of the IEEE RTS.

  • PDF

A Study on Nodal Probabilistic Reliability Evaluation at Load Points (각 지역별 확률론적 신뢰도 평가에 관한 연구)

  • Kim, Hong-Sik;Moon, Seung-Pil;Choi, Jae-Seok;Cha, Jun-Min
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.206-209
    • /
    • 2001
  • This paper illustrates a new method for reliability evaluation at load points in a composite power system. The algorithm includes uncertainties of generators and transmission lines as well as main transformers at substations. The CMELDC based on the new effective load model at HLII has been developed also. The CMELDC can be obtain from convolution integral processing of the outage capacity probabilistic distribution function of the fictitious generator and the original load duration curve given at the load point. The CMELDC based on the new model at HLII will extend the application areas of nodal probabilistic production cost simulation, outage cost assessment and reliability evaluation etc. at load points. The characteristics and effectiveness of this new model are illustrated by a case study of a small test system.

  • PDF

The Reliability Evaluation and Outage Cost Assessment of Composite Power System (복합전력계통의 유효부하지속곡선을 이용한 신뢰도 평가 및 공급지장비 추정)

  • Moon, Seung-Pil;Kim, Hong-Sik;Jang, Soon-Ryong;Choi, Jae-Seok;Kang, Jin-Jung;Cho, Jong-Man
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1033-1035
    • /
    • 1998
  • This paper presents a new analytical method for assessing outage cost of composite power system with considering transmission system uncertainty. Composite power system ELDC(CMELDC) was developed and proposed from reliability evaluation of composite power system in order to analysis the outage cost on HLII. In this study, considering the characteristic of each load point, the CMELDC was used for outage cost assessment and reliability evaluation at each load point. The characteristics and effectiveness of this methodology are illustrated by the case study (IEEE-RTS 24Buses).

  • PDF

Probabilistic Reliability Based Grid Expansion Planning of Power System Including Wind Turbine Generators

  • Cho, Kyeong-Hee;Park, Jeong-Je;Choi, Jae-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.698-704
    • /
    • 2012
  • This paper proposes a new methodology for evaluating the probabilistic reliability based grid expansion planning of composite power system including the Wind Turbine Generators. The proposed model includes capacity limitations and uncertainties of the generators and transmission lines. It proposes to handle the uncertainties of system elements (generators, lines, transformers and wind resources of WTG, etc.) by a Composite power system Equivalent Load Duration Curve (CMELDC)-based model considering wind turbine generators (WTG). The model is derived from a nodal equivalent load duration curve based on an effective nodal load model including WTGs. Several scenarios are used to choose the optimal solution among various scenarios featuring new candidate lines. The characteristics and effectiveness of this simulation model are illustrated by case study using Jeju power system in South Korea.

Development of the ELDC Construction of Composite Power System (복합전력계통에서의 유효부하지속곡선 작성법의 개발)

  • Choi, Jae-Seok;Moon, Seung-Pil;Jo, Jong-Man;Kang, Jin-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.171-173
    • /
    • 1997
  • This study proposes a method for evaluating composite power system effective load duration curve(CMELDC) al load points. The concept of ELDC in power system planning is very useful and important in HLI as well as HLII. Effective load duration curve of composite power system can be obtained from convolution integral processing or both probability function of unarrival power and load duration curve at load points. The characteristics and effectiveness of this methodology arc illustrated by case studyings of simple system.

  • PDF