• 제목/요약/키워드: CME

검색결과 223건 처리시간 0.024초

GEOMETRICAL IMPLICATION OF THE CME EARTHWARD DIRECTION PARAMETER AND ITS COMPARISON WITH CONE MODEL PARAMETERS

  • Moon, Y.J.;Kim, R.S.;Cho, K.S.
    • 천문학회지
    • /
    • 제42권2호
    • /
    • pp.27-32
    • /
    • 2009
  • Recently, we suggested a CME earthward direction parameter as an important geoeffective parameter that has been demonstrated by front-side halo CME data. In this study, we present the geometrical implication of this parameter by comparing with the parameters from a CME cone model. Major results from this study can be summarized as follows. First, we derive an analytic relationship between the cone model parameters(the half angular width of a cone and the angle between the cone axis and the plane of sky) and the earthward direction parameter. Second, we demonstrate a close relationship between the earthward direction parameter and the cone axis angle using 32 front-side full halo CMEs. Third, we found that there is noticeable inconsistency between the cone axis angles estimated from the cone model fitting to the CMEs and from their associated flare positions, implying that the flare position should not be considered as a good earthward direction parameter. Finally we present several advantages of our earthward direction parameter in terms of the forecast of a geomagnetic storm based on CME parameters.

CME propagation and proton acceleration in solar corona

  • Kim, Roksoon;Kwon, Ryunyoung;Lee, Jaeok;Lario, David
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.53.3-54
    • /
    • 2018
  • Solar Proton Events (SPEs) are the energetic phenomena related particle acceleration occurred in solar corona. Conventionally, they have been classified into two groups as the impulsive and gradual cases caused by reconnection in the flaring site and by shock generated by CME, respectively. In the previous studies, we classified these into four groups by analyzing the proton acceleration patterns in multi-energy channel observation. This showed that acceleration due to the magnetic reconnection may occur in the corona region relatively higher than the flaring site. In this study, we analyzes 54 SPEs observed in the energy band over 25 MeV from 2009 to 2013, where STEREO observations as well as SOHO can be utilized. From the multi-positional observation, we determine the exact time at which the Sun-Earth magnetic field line meets the CME shock structure by considering 3-dimensional structure of CME. Also, we determine the path length by considering the solar wind velocity for each event, so that the SPE onset time near the sun is obtained more accurately. Based on this study, we can get a more understanding of the correlation between CME progression and proton acceleration in the solar coronal region.

  • PDF

Two-Ribbon Filament Eruption on 29 September 2013

  • Kim, Yeon-Han;Bong, Su-Chan;Lee, Jaejin;Cho, Il-Hyun;Park, Young-Deuk
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.74.2-74.2
    • /
    • 2014
  • We have presented a classic two-ribbon filament eruption occurred in the east side of NOAA active region 11850 at 21:00 UT on 29 September 2013. Interestingly, this filament eruption was not accompanied by any flares and just there was a slight brightening in X-rays, C1.2, associated with the eruption. An accompanying huge CME was appeared at 22:12 UT in the LASCO C2 field of view and it propagates into the interplanetary space with a speed of about 440 km/s. And the related solar proton event (S2) started at 05:05 UT and peaked at 20:05 UT on 30 September 2013. The CME arrival was recorded by the ACE spacecraft around 01:30 UT on 2 October 2013. Around the CME arrival time, the solar-wind speed reached at about 640 km/s and IMF Bz showed southward component (-27 nT). Finally, the filament eruption and the CME cause geomagnetic storm (G2) at 03:00 UT on 2 October 2013. We described the detailed evolution of the filament eruption and its related phenomena such as CME, proton event, geomegnetic storm and so on. In addition, we will discuss about the activation mechanism of the filament eruption without flares.

  • PDF

Dependence of solar proton peak flux on 3-dimensional CME parameter

  • Park, Jinhye;Moon, Yong-Jae;Lee, Harim
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.64.1-64.1
    • /
    • 2015
  • In the present study, we examine the dependence of solar proton peak flux at SOHO and STEREO on 3-D CME parameters (radial speed, angular width, and longitudinal angular separation between its source region and the magnetic footpoints of spacecraft). For this we consider 38 proton enhancements of 16 SEP events observed by SOHO, STEREO-A, and/or B from 2010 August to 2013 June. As a result, we find that the enhancements are strongly dependent on these three parameters. The correlation coefficient between proton peak flux and CME speed is about 0.42 for the cases the footpoints are located inside the lateral boundaries of angular widths, while there is no correlation for the events outside the boundaries. The correlation coefficient between peak flux and angular separation is -0.51. We find that most of strong proton events occur when their angular separations are closer to zero, supporting that most of the proton fluxes are generated near the CME noses rather than their flanks.

  • PDF

Connection of Blobs along Post-CME Ray and EUV Flares

  • Kim, Yoojung;Chae, Jongchul
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.82.1-82.1
    • /
    • 2017
  • After a coronal mass ejection occur, plasma blobs are often observed along the post-CME ray. Searching for features related to the plasma blobs would be important in understanding their origin. We investigated the morphology of solar flares at EUV wavelengths, around the estimated times when blobs were formed. We focused on three events - 2013 September 21 and 22, 2015 March 7 and 8, and 2017 July 13 and 14 - observed by Atmospheric Imaging Assembly (AIA) aboard Solar Dynamic Observatory (SDO). Around the blob ejection times on 2013 September 21 and 22 and 2017 July 13 and14, we found regions with recurrent events of pronounced flux increase in EUV images. Around those of 2015 March 7 and 8, however, we could not observe such recurrent flux increase. This illustrates that even though blob ejections along different post-CME rays look similar in the high corona, the assocated features in the low corona may differ. We conclude that magnetic morphology and CME triggering process should be carefully examined in order to classify plasma blobs by their nature.

  • PDF

Magnetic Helicity Injection in Solar Active Regions Related to the CME Initiation and Speed

  • Park, Sung-Hong
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.50.2-50.2
    • /
    • 2010
  • Magnetic helicity injection in 28 solar active regions producing 46 CMEs was investigated to find its relationship with the occurrence and speed of CMEs. The helicity injection in the active regions under investigation was calculated using full-disk 96 minute MDI magnetograms. The major findings of this study are as follows. First, the 46 CMEs are categorized into two different groups by two characteristic evolution patterns of helicity injection in their active regions: (1) a monotonically increasing of helicity accumulation (Group A; 30 CMEs in 23 active regions) and (2) significant helicity injection followed by its sign reversal (Group B; 16 CMEs in 5 active regions). Second, a fairly good correlation between the helicity injection rate and the CME speed is found for the 30 CME events in Group A. Further statistical studies, however, are needed to check whether the two characteristic helicity patterns are shown in other CME-productive active regions.

  • PDF

HIGH-ENERGY SOLAR PARTICLE EVENTS IN THREE DIMENSIONS

  • Kocharov, Leon
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.45.1-45.1
    • /
    • 2010
  • Using SOHO particle and EUV detection and radio spectrograms from both ground-based and spaceborne instruments, we have studied the first phase of major solar energetic particle (SEP) events associated with wide and fast coronal mass ejections (CMEs) centered at different solar longitudes. Observations support the idea that acceleration of SEPs starts in the helium-rich plasma of the eruption's core well behind the CME leading edge, in association with coronal shocks and magnetic reconnection caused by the CME liftoff; and those "coronal" components dominate during the first ~1.5 hour of the SEP event, not yet being hidden by the CME-bow shock in solar wind. At magnetic connection to the eruption's periphery, onset of SEP emission is delayed for a time of the lateral expansion that is visualized by global coronal (EIT) wave. The first, "coronal" phase of SEP acceleration is followed by a second phase associated with CME-driven shock wave in solar wind, which accelerates high-energy ions from a helium-poor particle population until the interplanetary shock slows down to below 1000 km/s. Based on these and other SOHO observations, we discuss what findings can be expected from STEREO in the SOHO era perspective.

  • PDF

Study of Magnetic Helicity Injection in the Active Region NOAA 9236 Producing Multiple CME Events

  • Park, Sung-Hong;Cho, Kyung-Suk;Bong, Su-Chan;Park, Young-Deuk
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.84.1-84.1
    • /
    • 2011
  • In this study, we intend to inquire of how the temporal variation and spatial distribution of magnetic helicity injection in a CME-producing solar active region are related to the CME occurrence. We therefore investigate long-term (a few days) variation of magnetic helicity injection in the active region NOAA 9236 which produced multiple CME events. As a result, it is found that a noticeable increase in helicity of negative sign was first made for the first ~1.5 days and then 6 CMEs occurred while the relatively more injection of oppositely signed (positive) helicity was taking place for the next ~2 days. Afterwards, 2 CMEs in the region occurred while a more negative helicity is being injected again compared to a positive helicity. In addition, from helicity flux density maps, we found that the CMEs originated from this active region seem to be involved with the interaction of two magnetic field systems characterized by opposite signs of helicity.

  • PDF

Blind Algorithms with Decision Feedback based on Zero-Error Probability for Constant Modulus Errors

  • 김남용;강성진
    • 한국통신학회논문지
    • /
    • 제36권12C호
    • /
    • pp.753-758
    • /
    • 2011
  • The constant modulus algorithm (CMA) widely used in blind equalization applications minimizes the averaged power of constant modulus error (CME) defined as the difference between an instant output power and a constant modulus. In this paper, a decision feedback version of the linear blind algorithm based on maximization of the zero-error probability for CME is proposed. The Gaussian kernel of the maximum zero-error criterion is analyzed to have the property to cut out excessive CMEs that may be induced from severely distorted channel characteristics. Decision feedback approach to the maximum zero-error criterion for CME is developed based on the characteristic that the Gaussian kernel suppresses the outliers and this prevents error propagation to some extent. Compared to the linear algorithm based on maximum zero-error probability for CME in the simulation of blind equalization environments, the proposed decision feedback version has superior performance enhancement particularly in cases of severe channel distortions.