• Title/Summary/Keyword: CLASSIFICATION ANALYSIS

Search Result 8,050, Processing Time 0.035 seconds

Selection of markers in the framework of multivariate receiver operating characteristic curve analysis in binary classification

  • Sameera, G;Vishnu, Vardhan R
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.2
    • /
    • pp.79-89
    • /
    • 2019
  • Classification models pertaining to receiver operating characteristic (ROC) curve analysis have been extended from univariate to multivariate setup by linearly combining available multiple markers. One such classification model is the multivariate ROC curve analysis. However, not all markers contribute in a real scenario and may mask the contribution of other markers in classifying the individuals/objects. This paper addresses this issue by developing an algorithm that helps in identifying the important markers that are significant and true contributors. The proposed variable selection framework is supported by real datasets and a simulation study, it is shown to provide insight about the individual marker's significance in providing a classifier rule/linear combination with good extent of classification.

A Study on the Optimal Discriminant Model Predicting the likelihood of Insolvency for Technology Financing (기술금융을 위한 부실 가능성 예측 최적 판별모형에 대한 연구)

  • Sung, Oong-Hyun
    • Journal of Korea Technology Innovation Society
    • /
    • v.10 no.2
    • /
    • pp.183-205
    • /
    • 2007
  • An investigation was undertaken of the optimal discriminant model for predicting the likelihood of insolvency in advance for medium-sized firms based on the technology evaluation. The explanatory variables included in the discriminant model were selected by both factor analysis and discriminant analysis using stepwise selection method. Five explanatory variables were selected in factor analysis in terms of explanatory ratio and communality. Six explanatory variables were selected in stepwise discriminant analysis. The effectiveness of linear discriminant model and logistic discriminant model were assessed by the criteria of the critical probability and correct classification rate. Result showed that both model had similar correct classification rate and the linear discriminant model was preferred to the logistic discriminant model in terms of criteria of the critical probability In case of the linear discriminant model with critical probability of 0.5, the total-group correct classification rate was 70.4% and correct classification rates of insolvent and solvent groups were 73.4% and 69.5% respectively. Correct classification rate is an estimate of the probability that the estimated discriminant function will correctly classify the present sample. However, the actual correct classification rate is an estimate of the probability that the estimated discriminant function will correctly classify a future observation. Unfortunately, the correct classification rate underestimates the actual correct classification rate because the data set used to estimate the discriminant function is also used to evaluate them. The cross-validation method were used to estimate the bias of the correct classification rate. According to the results the estimated bias were 2.9% and the predicted actual correct classification rate was 67.5%. And a threshold value is set to establish an in-doubt category. Results of linear discriminant model can be applied for the technology financing banks to evaluate the possibility of insolvency and give the ranking of the firms applied.

  • PDF

A study on the classification standards of the problem of analysis and synthesis (분석과 종합문제의 분류 기준에 대한 연구 -러시아 구세프의 수학교과서를 중심으로-)

  • Kwon Young-In;Suh Bo-Euk
    • Communications of Mathematical Education
    • /
    • v.20 no.2 s.26
    • /
    • pp.231-248
    • /
    • 2006
  • There are several kinds of mathematical thinking. The most basic mathematical thinking is analysis and synthesis. The problem of analysis and synthesis is one of the most important things in mathematics. We used mathematical textbook of Prof. Gusev for the study on the problem of analysis and synthesis. We suggested basic classification standard of problem of analysis and synthesis through historical survey and then suggested specific classification standard.

  • PDF

Two-Dimensional Qualitative Asset Analysis Method based on Business Process-Oriented Asset Evaluation

  • Eom, Jung-Ho;Park, Seon-Ho;Kim, Tae-Kyung;Chung, Tai-Myoung
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.79-85
    • /
    • 2005
  • In this paper, we dealt with substantial asset analysis methodology applied to two-dimensional asset classification and qualitative evaluation method according to the business process. Most of the existent risk analysis methodology and tools presented classification by asset type and physical evaluation by a quantitative method. We focused our research on qualitative evaluation with 2-dimensional asset classification. It converts from quantitative asset value with purchase cost, recovery and exchange cost, etc. to qualitative evaluation considering specific factors related to the business process. In the first phase, we classified the IT assets into tangible and intangible assets, including human and information data asset, and evaluated their value. Then, we converted the quantitative asset value to the qualitative asset value using a conversion standard table. In the second phase, we reclassified the assets using 2-dimensional classification factors reflecting the business process, and applied weight to the first evaluation results. This method is to consider the organization characteristics, IT asset structure scheme and business process. Therefore, we can evaluate the concrete and substantial asset value corresponding to the organization business process, even if they are the same asset type.

A Study on the Classification of Unstructured Data through Morpheme Analysis

  • Kim, SungJin;Choi, NakJin;Lee, JunDong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.105-112
    • /
    • 2021
  • In the era of big data, interest in data is exploding. In particular, the development of the Internet and social media has led to the creation of new data, enabling the realization of the era of big data and artificial intelligence and opening a new chapter in convergence technology. Also, in the past, there are many demands for analysis of data that could not be handled by programs. In this paper, an analysis model was designed and verified for classification of unstructured data, which is often required in the era of big data. Data crawled DBPia's thesis summary, main words, and sub-keyword, and created a database using KoNLP's data dictionary, and tokenized words through morpheme analysis. In addition, nouns were extracted using KAIST's 9 part-of-speech classification system, TF-IDF values were generated, and an analysis dataset was created by combining training data and Y values. Finally, The adequacy of classification was measured by applying three analysis algorithms(random forest, SVM, decision tree) to the generated analysis dataset. The classification model technique proposed in this paper can be usefully used in various fields such as civil complaint classification analysis and text-related analysis in addition to thesis classification.

A Study on the Analysis of Patent information in the Korean Medicine -Focused on International Patent Classification- (국제특허분류를 중심으로 한 한의학 분야의 특허정보 분석 연구)

  • Song, Mi-Young;Kim, Hong-Jun;Choi, Hwan-Soo
    • Korean Journal of Oriental Medicine
    • /
    • v.11 no.2
    • /
    • pp.67-96
    • /
    • 2005
  • This Study focused on IPC (International Patent Classification) for TKM (Traditional Korea Medicine) Paper. The results processed for 9,000 TKM paper by using 8th in IPC Classification. The name of Herbal Medicine assigned to IPC Classification, we assigned to two part for main-Classification(A61K) and sub-Classification (A61P). The results obtained about 77% for A61K and about 96% for A61K36 among them. And also analysed about 23% for sub-Classification(A61P) additionally. Main-Classification is distributed A61K > A61H37 > A61B5 > A61N > A61M1. Detailed Main-Classification for A61K is distributed A61K36 > A61K35 > A61K33 among Main-Classification. TKM Paper mainly analysed A61K36 and A61H37 in Main-Classification. According to the results. 'The Korean Journal of Herbology' has high-valued for Utilization as a Non Patent Document. we should constructed Database system for protection of intellectual property rights. And after We will registered minimum documentation of PCT.

  • PDF

Bands Classification of Multispectral Image Data using Indiscernibility Relations in Rough Sets (러프 집합에서의 식별 불능 관계를 이용한 다중 분광 이미지 데이터의 밴드 분류)

  • Won Sung-Hyun
    • Management & Information Systems Review
    • /
    • v.1
    • /
    • pp.401-412
    • /
    • 1997
  • Traditionally, classification of remote sensed image data is one of the important works for image data analysis procedure. So, many researchers have been devoted their endeavor to increasing accuracy of analysis, also, many classification algorithms have been proposed. In this paper, we propose new bands selection method for multispectral bands of remote sensed image data that use rough set theory. Using indiscernibility relations in rough sets, we show that can select the efficient bands of multispectral image data, automatically.

  • PDF

Phylogenetic Relationships of the Aphyllophorales Inferred from Sequence analysis of Nuclear Small Subunit Ribosomal DNA

  • Kim, Seon-Young;Jung, Hack-Sung
    • Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.122-131
    • /
    • 2000
  • Phylogenetic classification of the Aphyllophorales was conducted based on the analysis of nuclear small subunit ribosomal RNA (nuc SSU rDNA) sequence. Based on phylogenetic groupings and taxonomic characters, 16 families were recognized and discussed. Although many of the characters had more or less homoplasies, miroscopic characters such ad the mitic system and clamp, spore amyloidity and rot type appeared to be important in the classification of the Aphyllophorales. Phylogenetically significant families were newly defined to improve the classification of the order Aphyllophorales.

  • PDF

A CLASSIFICATION FOR PANCHROMATIC IMAGERY BASED ON INDEPENDENT COMPONENT ANALYSIS

  • Lee, Ho-Young;Park, Jun-Oh;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.485-487
    • /
    • 2003
  • Independent Component Analysis (ICA) is used to generate ICA filter for computing feature vector for image window. Filters that have high discrimination power are selected to classify image from these ICA filters. Proposed classification algorithm is based on probability distribution of feature vector.

  • PDF

Class Separability according to the different Type of Satellite Images (위성영상 종류에 따른 분리도 특성)

  • Son, Kyeong-Sook;Choi, Hyun;Kim, Si-Nyun;Kang, In-Joon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.245-250
    • /
    • 2004
  • The classification of the satellite images is basic part in Remote sensing. In classification of the satellite images, class separability feature is very effective accuracy of the images classified. For improving classification accuracy, It is necessary to study classification methode than analysis of class separability feature deciding classification probability. In this study, IKONOS, SPOT 5, Landsat TM, were resampled to sizes 1m grid. Above images were calculated the class separability prior to the step for classification of pixels. The results of the study were valued necessary process in geometric information building. This study help to improve accuracy of classification as feature of class separability in the class through optimizing previous classification steps.

  • PDF