• Title/Summary/Keyword: CIGS Solar Cell

Search Result 168, Processing Time 0.032 seconds

Compositional SIMS Depth Profiling of CIGS film

  • Kim, Gyeong-Jung;Hwang, Hye-Hyeon;Jang, Jong-Sik;Jeong, Yong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.367-367
    • /
    • 2011
  • CIGS solar cell with copper, indium, gallium and selenium is a second generation solar cells for the lowering of the manufacturing cost. The relative ratio of the four elements is one of the most important measurement issues because the photovoltaic property of CIGS solar cell depends on the crystalline structure of the CIGS layer. However, there is no useful analysis method for the composition of the CIGS layer. Recently, AES depth profiling analysis of CIGS films has been studied with a reference material certified by inductively coupled plasma optical emission spectroscopy. However, there are some problems in AES depth profiling analysis of CIGS films. In this study, the in-depth profiling analysis was investigated by secondary ion mass spectrometry (SIMS) depth profiling analysis. We will present the compositional depth profiling of CIGS films by SIMS and its applications for the development of CIGS solar cells with high efficiency.

  • PDF

Simulation of Rough Surface of CIGS (CuInGaSe) Solar Cell by RCWA (Rigorous Coupled Wave Analysis) Considering the Incoherency of Light

  • Kim, Sung Chul
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.180-183
    • /
    • 2014
  • The surface of semiconductor solar cells, such as a-Si or CIGS (CuInGaSe) solar cells is not flat but textured in the microscopic domain. With textured surfaces, the optical reflectivity of a solar cell is different from that of flat surfaces in the wavelength region. In this paper, the effects of a textured surface on a CIGS solar cell are presented by RCWA (Rigorous Coupled Wave Analysis) method. The effect of incoherent light is also considered by RCWA with a Fourier analysis while conventional optical simulation uses the input light on the solar cell as coherent light. Using experimental results, the author showed that the RCWA method with a Fourier analysis is a proper method to simulate the optical properties of CIGS solar cells.

Effects of the Incidence Angle and Temperature on the Performance of a Thin-Film CIGS Solar Cell for Solar Powered UAVs (태양광무인기를 위한 박막형 태양전지의 입사각 및 온도에 따른 성능분석)

  • Shin, Donghun;Kim, Tae Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.55.2-55.2
    • /
    • 2011
  • This research aims to study the effects of the incidence angle and surface temperature on the power generation performance of a thin-film CIGS solar cell for solar powered unmanned aerial vehicles (UAVs). The test rig consists of a unit CIGS solar cell is installed on a table whose angle is controlled manually. A K-type thermocouple is attached to the solar cell surface for temperature measurements. A solar module analyzer measures the voltage and current generated from the test solar cell. The solar module analyzer also calculates the maximum solar power and efficiency of the solar cell. All test data are acquired in a PC. Test results show that the solar cell efficiency decreases significantly with increasing incidence angle and increasing surface temperature in general. As the incidence angle increases from 0 degree to 90 degree, the solar cell efficiency decreases by 60%. The solar cell efficiency decreases by 10% with increasing solar cell surface temperature from $20^{\circ}C$ to $30^{\circ}C$, for exmaple. The direct cooling method of the solar cell using dry ice decreases dramatically the solar cell surface temperature, thus increasing the solar cell efficiency by 15%.

  • PDF

Fabrication of CIGS Thin Film Solar Cell by Non-Vacuum Nanoparticle Deposition Technique (비진공 나노입자 코팅법을 이용한 CIGS 박막 태양전지 제조)

  • Ahn, Se-Jin;Kim, Ki-Hyun;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.222-224
    • /
    • 2006
  • A non-vacuum process for $Cu(In,Ga)Se_2$ (CIGS) thin film solar cells from nanoparticle precursors was described in this work CIGS nanoparticle precursors was prepared by a low temperature colloidal route by reacting the starting materials $(CuI,\;InI_3,\;GaI_3\;and\;Na_2Se)$ in organic solvents, by which fine CIGS nanoparticles of about 20nm in diameter were obtained. The nanoparticle precursors were mixed with organic binder material for the rheology of the mixture to be adjusted for the doctor blade method. After depositing the mixture of CIGS with binder on Mo/glass substrate, the samples were preheated on the hot plate in air to evaporate remaining solvents ud to burn the organic binder material. Subsequently, the resultant (porous) CIGS/Mo/glass simple was selenized in a two-zone Rapid Thermal Process (RTP) furnace in order to get a solar ceil applicable dense CIGS absorber layer. Complete solar cell structure was obtained by depositing. The other layers including CdS buffer layer, ZnO window layer and Al electrodes by conventional methods. The resultant solar cell showed a conversion efficiency of 0.5%.

  • PDF

Effects of reversible metastable defect induced by illumination on Cu(In,Ga)Se2 solar cell with CBD-ZnS buffer layer

  • Lee, Woo-Jung;Yu, Hye-Jung;Cho, Dae-Hyung;Wi, Jae-Hyung;Han, Won-Seok;Yoo, Jisu;Yi, Yeonjin;Song, Jung-Hoon;Chung, Yong-Duck
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.431-431
    • /
    • 2016
  • Typical Cu(In,Ga)Se2 (CIGS)-based solar cells have a buffer layer between CIGS absorber layer and transparent ZnO front electrode, which plays an important role in improving the cell performance. Among various buffer materials, chemical bath deposition (CBD)-ZnS is being steadily studied to alternative to conventional CdS and the efficiency of CBD-ZnS/CIGS solar cell shows the comparable values with that of CdS/CIGS solar cell. The intriguing thing is that reversible changes occur after exposure to illumination due to the metastable defect states in completed ZnS/CIGS solar cell, which induces an improvement of solar cell performance. Thus, it implies that the understanding of metastable defects in CBD-ZnS/CIGS solar cell is important issue. In this study, we fabricate the ITO/i-ZnO/CBD-ZnS/CIGS/Mo/SLG solar cells by controlling the NH4OH mole concentration (from 2 M to 3.5 M) of CBD-ZnS buffer layer and observe their conversion efficiency with and without light soaking for 1 hr. From the results, NH4OH mole concentration and light exposure can significantly affect the CBD-ZnS/CIGS solar cell performance. In order to investigate that which layer can contain metastable defect states to influence on solar cell performance, impedance spectroscopy and capacitance profiling technique with exposure to illumination have been applied to CBD-ZnS/CIGS solar cell. These techniques give a very useful information on the density of states within the bandgap of CIGS, free carriers density, and light-induced metastable effects. Here, we present the rearranged charge distribution after exposure to illumination and suggest the origin of the metastable defect states in CBD-ZnS/CIGS solar cell.

  • PDF

Study of ZnS/CIGS Hetero-interface for Cd-free CIGS Solar Cells (Cd-free 태양전지를 위한 ZnS/CIGS 이종접합 특성 향상 연구)

  • Shin, Donghyeop;Kim, Jihye;Go, Youngmin;Yun, Jaeho;Ahn, Byungtae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.106.1-106.1
    • /
    • 2011
  • The Cu(In,Ga)Se2 (CIGS) thin film solar cells have been achieved until almost 20% efficiency by NREL. These solar cells include chemically deposited CdS as buffer layer between CIGS absorber layer and ZnO window layer. Although CIGS solar cells with CdS buffer layer show excellent performance, the short wavelength response of CIGS solar cell is limited by narrow CdS band gap of about 2.42 eV. Taking into consideration the environmental aspect, the toxic Cd element should be replaced by a different material. Among Cd-free candidate materials, the CIGS thin film solar cells with ZnS buffer layer seem to be promising with 17.2%(module by showa shell K.K.), 18.6%(small area by NREL). However, ZnS/CIGS solar cells still show lower performance than CdS/CIGS solar cells. There are several reported reasons to reduce the efficiency of ZnS/CIGS solar cells. Nakada reported ZnS thin film had many defects such as stacking faults, pin-holes, so that crytallinity of ZnS thin film is poor, compared to CdS thin film. Additionally, it was known that the hetero-interface between ZnS and CIGS layer made unfavorable band alignment. The unfavorable band alignment hinders electron transport at the heteo-interface. In this study, we focused on growing defect-free ZnS thin film and for favorable band alignment of ZnS/CIGS, bandgap of ZnS and CIGS, valece band structure of ZnS/CIGS were modified. Finally, we verified the photovoltaic properties of ZnS/CIGS solar cells.

  • PDF

Effect of Degraded Al-doped ZnO Thin Films on Performance Deterioration of CIGS Solar Cell (고온 및 고온고습 환경 내에서 ZnO:Al 투명전극의 열화가 CIGS 박막형 태양전지의 성능 저하에 미치는 영향)

  • Kim, Do-Wan;Lee, Dong-Won;Lee, Hee-Soo;Kim, Seung-Tae;Park, Chi-Hong;Kim, Yong-Nam
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.328-333
    • /
    • 2011
  • The influence of Al-doped ZnO (AZO) thin films degraded under high temperature and damp heat on the performance deterioration of Cu(In,Ga)$Se_2$ (CIGS) solar cells was investigated. CIGS solar cells with AZO/CdS/CIGS/Mo structure were prepared on glass substrate and exposed to high temperature ($85^{\circ}C$) and damp heat ($85^{\circ}C$/85% RH) for 1000 h. As-prepared CIGS solar cells had 64.91% in fill factor (FF) and 12.04% in conversion efficiency. After exposed to high temperature, CIGS solar cell had 59.14% in FF and 9.78% in efficiency, while after exposed to damp heat, it had 54.00% in FF and 8.78% in efficiency. AZO thin films in the deteriorated CIGS solar cells showed increases in resistivity up to 3.1 times and 4.4 times compared to their initial resistivity after 1000 h of high temperature and damp heat exposure, respectively. These results can be explained by the decreases in carrier concentration and mobility due to diffusion or adsorption of oxygen and moisture in AZO thin films. It can be inferred that decreases in FF and conversion efficiency were caused by an increase in series resistance, which resulted from an increase in resistivity of AZO thin films degraded under high temperature and damp heat.

The Formation of Absorption Layer for the CIGS Solar Cell by Aerosol Deposition Method (Aerosol Deposition 법을 이용한 CIGS 태양전지의 광흡수층 형성)

  • Kim, In Ae;Shin, Hyo Soon;Yeo, Dong Hun;Jeong, Dae Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.909-914
    • /
    • 2013
  • CIGS is one of thin film solar cell and has been studied so much, because of the possibility of low price and high efficiency. Until now, co-evaporation and sputtering were typical method to prepare CIGS absorption layer, and a few company commercialized solar cell by these method. However, non-vacuum process which has been studied for long time has not been progressed, though the merit of low price. Especially, aerosol deposition method has not been reported, because it is difficult to prepare a large quantity of various CIGS powder. In this study, CIGS powder was synthesized by mechanochemical method and CIGS absorption layer was deposited by aerosol deposition method. The thickness of the CIGS layer was controlled by the number of deposition and the surface roughness of it was affected by the amount of flow gas. And, also, I-V curve of it appeared metallic property in the case of 'as deposition'. After heat treatment in Se-rich atmosphere, the electrical property of it changed to a semiconductor. CdS and transparent conduction layer were formed by a typical method on it for solar cell. The efficiency of cell was appeared 0.19%. Though the efficiency was low because of the disharmony in the after-process, it was conformed that CIGS solar cell could be prepared by aerosol deposition.

A Study of CIGS Coated Thin-Film Layer using Doctor Blade Process (Doctor blade를 이용한 용액형 CIGS 균일 코팅에 관한 연구)

  • Yu, Jong-Su;Yoon, Seong Man;Kim, Do-Jin;Jo, Jeongdai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.93.2-93.2
    • /
    • 2010
  • Recently, printing and coating technologies application fields have been expanded to the energy field such as solar cell. One of the main reasons, why many researchers have been interested in printing technology as a manufacturing method, is the reduction of manufacturing cost. In this paper, We fabricated CIGS solar cell thin film layer by doctor blade methods using synthesis of CIS precursor nanoparticles ink on molybdenum (Mo) coated soda-lime glass substrate. Synthesis CIS precursor nanoparticles ink fabrication was mixed Cu, In, Se powder and Ethylenediamine, using microwave and centrifuging. Using multi coating process as we could easily fabrication a fine flatness CIS thin-film layer ($0.7{\sim}1.35{\mu}m$), and reduce a manufacture cost and process steps. Also if we use printing and coating method and solution process in each layer of CIGS solar cell (electrode, buffer), it is possible to fabricate all printed thin-film solar cell.

  • PDF

Structural and Optical Properties of Copper Indium Gallium Selenide Thin Films Prepared by RF Magnetron Sputtering

  • Kong, Seon-Mi;Fan, Rong;Kim, Dong-Chan;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.158-158
    • /
    • 2011
  • $Cu(In_xGa_{1-x})Se_2$ (CIGS) thin film solar cell is one of the most promising solar cells in photovoltaic devices. CIGS has a direct band gap which varied from 1.0 to 1.26 eV, depending on the Ga to In ratio. Also, CIGS has been studying for an absorber in thin film solar cells due to their highest absorption coefficient which is $1{\times}10^5cm^{-1}$ and good stability for deposition process at high temperature of $450{\sim}590^{\circ}C$. Currently, the highest efficiency of CIGS thin film solar cell is approximately 20.3%, which is closely approaching to the efficiency of poly-silicon solar cell. The deposition technique is one of the most important points in preparing CIGS thin film solar cells. Among the various deposition techniques, the sputtering is known to be very effective and feasible process for mass production. In this study, CIGS thin films have been prepared by rf magnetron sputtering method using a single target. The optical and structural properties of CIGS films are generally dependent on deposition parameters. Therefore, we will explore the influence of deposition power on the properties of CIGS films and the films will be deposited by rf magnetron sputtering using CIGS single target on Mo coated soda lime glass at $500^{\circ}C$. The thickness of CIGS films will be measured by Tencor-P1 profiler. The optical properties will be measured by UV-visible spectroscopy. The crystal structure will be analyzed using X-ray diffraction (XRD). Finally the optimal deposition conditions for CIGS thin films will be developed.

  • PDF