DOI QR코드

DOI QR Code

The Formation of Absorption Layer for the CIGS Solar Cell by Aerosol Deposition Method

Aerosol Deposition 법을 이용한 CIGS 태양전지의 광흡수층 형성

  • Kim, In Ae (Advanced Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Hyo Soon (Advanced Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Yeo, Dong Hun (Advanced Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Dae Yong (Department of Materials Science and Engineering, Inha University)
  • 김인애 (한국세라믹기술원 기초소재융합본부) ;
  • 신효순 (한국세라믹기술원 기초소재융합본부) ;
  • 여동훈 (한국세라믹기술원 기초소재융합본부) ;
  • 정대용 (인하대학교 신소재공학과)
  • Received : 2013.11.04
  • Accepted : 2013.11.22
  • Published : 2013.12.01

Abstract

CIGS is one of thin film solar cell and has been studied so much, because of the possibility of low price and high efficiency. Until now, co-evaporation and sputtering were typical method to prepare CIGS absorption layer, and a few company commercialized solar cell by these method. However, non-vacuum process which has been studied for long time has not been progressed, though the merit of low price. Especially, aerosol deposition method has not been reported, because it is difficult to prepare a large quantity of various CIGS powder. In this study, CIGS powder was synthesized by mechanochemical method and CIGS absorption layer was deposited by aerosol deposition method. The thickness of the CIGS layer was controlled by the number of deposition and the surface roughness of it was affected by the amount of flow gas. And, also, I-V curve of it appeared metallic property in the case of 'as deposition'. After heat treatment in Se-rich atmosphere, the electrical property of it changed to a semiconductor. CdS and transparent conduction layer were formed by a typical method on it for solar cell. The efficiency of cell was appeared 0.19%. Though the efficiency was low because of the disharmony in the after-process, it was conformed that CIGS solar cell could be prepared by aerosol deposition.

Keywords

References

  1. T. Kjrchartz, U. Rau, M. Kurth, J. Mattheis, and J. H. Werner, Thin Solid Films, 515, 6238 (2007). https://doi.org/10.1016/j.tsf.2006.12.105
  2. C. Xu, H. Zhang, J. Parry, S. Perera, G. Long, and H. Zeng, Sol. Energy Mater. Sol. Cells, 117, 357 (2013). https://doi.org/10.1016/j.solmat.2013.06.006
  3. S. U. Park, R. Sharma, K. Ashok, S. Kang, J. K. Sim, and C. R. Lee, J. Cryst. Growth, 359, 1 (2012). https://doi.org/10.1016/j.jcrysgro.2012.08.013
  4. P. J. Sebastian, M. E. Calixto, R. N. Bhattacharya, and R. Noufi, Sol. Energy Mater. Sol. Cells, 59, 125 (1999). https://doi.org/10.1016/S0927-0248(99)00037-9
  5. A. E. Delahoy, L. Chen, M. Akhtar, B. Sang, and S. Guo, Solar Energy, 77, 785 (2004). https://doi.org/10.1016/j.solener.2004.08.012
  6. V. S. Saji, I. H. Choi, and C. W. Lee, Solar Energy, 85, 266 (2011).
  7. B. S. Koo, S. J. Sung, D. H. Kim, D. H. Lee, and D. K. Hwang, Curr. Appl. Phys., 13, S135 (2013). https://doi.org/10.1016/j.cap.2013.01.022
  8. N. G. Dhere, Sol. Energy Mater. Sol. Cells, 95, 277 (2011). https://doi.org/10.1016/j.solmat.2010.02.019
  9. S. I. Gu, H. S. Shin, D. H. Yeo, Y. W. Hong, and S. Nahm, Curr. Appl. Phys., 11, S99 (2011).
  10. I. Kim, J. Park, T. H. Nam, K. W. Kim, J. H. Ahn, D. S. Park, C. Ahn, G. Wang, and H. J. Ahn, J. Power Sources, 244, 646 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.108
  11. R. Modi, A. Khan, M. Joshi, S. Ganju, A. K. Singh, A. Srivastava, B. K. Sapra, and Y. S. Mayya, Annals of Nuclear Energy, 64, 107 (2014). https://doi.org/10.1016/j.anucene.2013.09.032
  12. J. Aked and J. Therm, Spray Technol, 17, 181 (2008). https://doi.org/10.1007/s11666-008-9163-7
  13. J. J. Choi, B. D. Hahn, J. H. Ryu, W. H. Yoon, B. K. Lee, and D. S. Park, Sens. Actuators, A Phys., 153, 89 (2009). https://doi.org/10.1016/j.sna.2009.04.025
  14. M. Kubo, Y. Ishihara, Y. Mantani, and M. Shimada, Chem. Eng. J., 232, 221 (2013). https://doi.org/10.1016/j.cej.2013.07.097
  15. L. Madler, A.A. Lall, S.K. Friedlander, Nanotechnology, 17, 4783 (2006). https://doi.org/10.1088/0957-4484/17/19/001
  16. E. Thimsen and P. Biswas, AIChE J., 53, 1727 (2007). https://doi.org/10.1002/aic.11210
  17. M. W. Lee, J. J. Park, D. Y. Kim, S. S. Yoon, H. Y. Kim, S. C. James, S. Chandra, T. Coyle, J. H. Ryu, W. H. Yoon, and D. S. Park, J. Aerosol Sci., 42, 771 (2011). https://doi.org/10.1016/j.jaerosci.2011.07.006
  18. S. J. Ahn, K. H. Kim, J. H. Yun, and K. H. Yoon, J. Appl. Phys., 105, 113533 (2009). https://doi.org/10.1063/1.3141755
  19. C. P. Liu and C. L. Chuang, Powder Technol., 229, 78 (2012). https://doi.org/10.1016/j.powtec.2012.06.011
  20. F. Kang, J. Ao, G. Sun, Q. He, and Y. Sun, Curr. Appl. Phys., 10, 886 (2010). https://doi.org/10.1016/j.cap.2009.10.015
  21. S. R. Dhage and H. T. Hahn, J. Phys. Chem. Solids, 71, 1480 (2010). https://doi.org/10.1016/j.jpcs.2010.07.016