• 제목/요약/키워드: CI engine

검색결과 73건 처리시간 0.03초

Work-Related Musculoskeletal Disorders in Iranian Dentists: A Systematic Review and Meta-analysis

  • ZakerJafari, Hamid Reza;YektaKooshali, Mohammad Hossein
    • Safety and Health at Work
    • /
    • 제9권1호
    • /
    • pp.1-9
    • /
    • 2018
  • Background: Work-related musculoskeletal disorders are the most important problems among professions particularly, dentists. This study was conducted to determine the prevalence of musculoskeletal disorders in various parts of the body in Iranian dentists by using systematic review and meta-analysis. Methods: This systematic review and meta-analysis was based on preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines and searching in national databases such as SID, Magiran, Irandoc, IranMedex, and Medlib, and international databases such as MedLine, Web of Sciences, Scopus, PubMed, ScienceDirect, Cochrane, Embase, Springer, Wiley Online Library, Ebsco, CEBM, and Google Scholar search engine which were published by January 1, 2017. Researched keywords were in Persian and their standard English equivalents were in accordance with their MeSH. The obtained documents were analyzed using Comprehensive Meta-analysis version 2. Results: According to 23 studies through 2,531 Iranian dentists which took part in this study, prevalence of skeletal disorders in Iranian dentists has been 17.6% [confidence interval (CI) 95%:11.7-25.5] in knees, 33.2% (CI 95%:24.1-43.8) in shoulders, 33.4% (CI 95%: 26.8-40.8) in the thorax, 51.9% (CI 95%:46.7-57.2) in necks, 33.7% (CI 95%:28.2-39.6) in wrists/hands, 12.9% (CI 95%:7.7-20.6) in elbows, 37.3% (CI 95%: 31.5-43.5) in lower back, 11.9% (CI 95%:8.7-16.1) in thighs, 12.9% (CI 95%:3.8-36) in the foot, and 10.5% (CI 95%:7-15.4) in legs. Conclusion: Considering the high prevalence of musculoskeletal disorders in Iranian dentists, ergonomics should be included as a lesson in preclinic and also, reeducation courses for ergonomics basics should be executed for graduate dentists.

CI기관에서 디젤산화촉매장치에 의한 배출가스 저감에 관한 연구 (A Study on Emission Reduction by Diesel Oxidation Catalyst in Diesel Engine)

  • 김경배;한영출;강호인
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.164-170
    • /
    • 1996
  • Among after treatment devices which reduce exhaust gas of diesel engine, diesel oxidation catalyst(DOC) with high reduction efficiency for gaseous matter and particulate matter is now being studied actively. In this study, an experiment was conducted to analyze the effects on factors of oxidaton characteristics and conversion efficiency of DOC. We tested to estimate change of engine performance whether a 11,000cc diesel engine equipps with DOC or not. We conducted test to estimate the reduction efficiency of exhaust gas in P-5 mode, in D-13 mode of heavy duty diesel regulation mode and in somoke opacity mode for two samples and also we conducted test to analyze the effects about both exhaust gas velocities 1,100rpm and 2,200rpm

  • PDF

Development of intelligent model to predict the characteristics of biodiesel operated CI engine with hydrogen injection

  • Karrthik, R.S.;Baskaran, S.;Raghunath, M.
    • Advances in Computational Design
    • /
    • 제4권4호
    • /
    • pp.367-379
    • /
    • 2019
  • Multiple Inputs and Multiple Outputs (MIMO) Fuzzy logic model is developed to predict the engine performance and emission characteristics of pongamia pinnata biodiesel with hydrogen injection. Engine performance and emission characteristics such as brake thermal efficiency (BTE), brake specific energy consumption (BSEC), hydrocarbon (HC), carbon monoxide (CO), carbon dioxide ($CO_2$) and nitrous oxides ($NO_X$) were considered. Experimental investigations were carried out by using four stroke single cylinder constant speed compression ignition engine with the rated power of 5.2 kW at variable load conditions. The performance and emission characteristics are measured using an Exhaust gas analyzer, smoke meter, piezoelectric pressure transducer and crank angle encoder for different fuel blends (Diesel, B10, B20 and B30) and engine load conditions. Fuzzy logic model uses triangular and trapezoidal membership function because of its higher predictive accuracy to predict the engine performance and emission characteristics. Computational results clearly demonstrate that, the proposed fuzzy model has produced fewer deviations and has exhibited higher predictive accuracy with acceptable determination correlation coefficients of 0.99136 to 1 with experimental values. The developed fuzzy logic model has produced good correlation between the fuzzy predicted and experimental values. So it is found to be useful for predicting the engine performance and emission characteristics with limited number of available data.

기계식 연료펌프를 사용하는 혼소엔진에서 노즐특성에 따른 경유 분사특성 측정 (Measurements of Spray Characteristics According to Nozzle Property in Dual Fuel Engine with a Mechanical Fuel Pump)

  • 조승환;유승헌;이범호;김동현;이대엽
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.94-99
    • /
    • 2012
  • The characteristics of spray behavior and injected amount were studied with two types of nozzles for using in a compression ignition engine with dual fuel technology for construction machines. A penetration length of spray tends to shorten due to a decrease of injected amount of a diesel fuel with dual fuel engine application. In order to ignite the gaseous fuel premixed with air during intake process, a diesel fuel, which was compression ignited, needs to penetrate somehow similar depth compared with the case of a diesel fuel-only-injection. In this work, a nozzle with reduced hole diameter and increased number of holes was tested and demonstrated that, compared to diesel 100% case, its penetration lengths are comparable to 74% and 79%, respectively, of those of 100% and 50% supply of a diesel fuel with the baseline nozzle that has four holes and 30.4% increased diameter. This will presumably enhancement the combustion in a dual fuel engine. A design suggestion was also made in this work to achieve similar penetration length of spray with diesel 100% case to prevent combustion from being deteriorated in a dual fuel engine.

커먼레일 분사장치를 이용한 Dimethyl Ether와 디젤연료의 연소특성 (Combustion Characteristics of Dimethyl Ether (DME) and Diesel Fuel Using a Common-rail Fuel Injection System)

  • 최욱;이주광;배충식
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.30-37
    • /
    • 2004
  • The combustion and emission characteristics of a direct injection CI engine fuelled with DME(Dimethyl Ether) and diesel fuel were compared at idle engine speed(800 rpm) with various injection parameters. An optical single cylinder diesel engine equipped with a common-rail fuel injection system was constructed to investigate combustion processes of DME and diesel fuel. The combustion images were recorded with a high-speed video camera system. The results demonstrated that the DME-fuelled engine was superior to the conventional diesel engine in terms of engine performance and emissions. The optimal injection timing of DME was located around IDC(Top Dead Center), which was roughly same as that of diesel fuel. As the injection timing was advanced much earlier than TDC, NOx (Nitric Oxides) level increased considerably. NOx emission of DME was equal or a little higher than that for diesel fuel at the same injection pressure and timing because of higher evaporation characteristics of DME. Throughout all experimental conditions, DME did not produce any measurable smoke level.

대체에너지 DME를 사용하는 직접분사엔진의 배기특성에 미치는 Cooled EGR의 영향 (Effects of Cooled EGR on Exhaust Emission Characteristics of DI DME Engine)

  • 표영덕;남상훈;김강출;김영길;이영재
    • 한국수소및신에너지학회논문집
    • /
    • 제14권2호
    • /
    • pp.138-145
    • /
    • 2003
  • There are high expectations for DME(Dimethyl Ether) as a new alternative fuel for diesel engine. Compared with the conventional diesel engine, nearly zero soot emission and high thermal efficiency have been reported from DME fuelled CI engines. However, higher NOx emission is one of the disadvantages from DME Engines. In the present study, cooled EGR(Exhaust Gas Recirculation) was applied to DME engine modified from conventional Dl diesel engine, and effects of EGR were examined under various EGR temperature. Finally, it was concluded that the cooled EGR is an effective solution to reduce NOx emission from DME engine.

DRASTIC IMPROVEMENT OF THERMAL EFFICIENCY BY RAPID PISTON-MOVEMENT NEAR TDC

  • Moriyoshi, Y.;Sano, M.;Morikawa, K.;Kaneko, M.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.295-301
    • /
    • 2006
  • A new combustion method of high compression ratio SI engine was studied and proposed in order to achieve high thermal efficiency, comparable to that of CI engine. Compression ratio of SI engine is generally restricted by the knocking phenomena. A combustion chamber profile and a cranking mechanism were studied to avoid knocking with high compression ratio. Because reducing the end-gas temperature will suppress knocking, a combustion chamber was considered to have a wide surface at the end-gas region. However, wide surface will lead to large heat loss, which may cancel the gain of higher compression ratio operation. Thereby, a special cranking mechanism was adapted which allowed the piston to move rapidly near TDC. Numerical simulations were performed to optimize the cranking mechanism for achieving high thermal efficiency. An elliptic gear system and a leaf-shape gear system were employed in numerical simulations. Livengood-Wu integral, which is widely used to judge knocking occurrence, was calculated to verify the effect for the new concept. As a result, this concept can be operated at compression ratio of fourteen using a regular gasoline. A new single cylinder engine with compression ratio of twelve and TGV(Tumble Generation Valve) to enhance the turbulence and combustion speed was designed and built for proving its performance. The test results verified the predictions. Thermal efficiency was improve over 10% with compression ratio of twelve compared to an original engine with compression ratio of ten when strong turbulence was generated using TGV, leading to a fast combustion speed and reduced heat loss.

압축착화 디젤엔진에서 펜탄올/경유 혼합유의 연소 및 배기 특성에 관한 실험적 연구 (An Experimental Study on Combustion and Emission Characteristics of a CI Diesel Engine Fueled with Pentanol/Diesel Blends)

  • 권재성;김범수;양정현
    • 한국수소및신에너지학회논문집
    • /
    • 제35권1호
    • /
    • pp.97-104
    • /
    • 2024
  • In this study, combustion experiments were conducted to assess engine performance and exhaust gas characteristics using four blends of 1-pentanol and diesel as fuel in a naturally aspirated 4-stroke diesel engine. The blending ratios of 1-pentanol were 5, 10, 15, and 20% by volume. The experiments were carried out under four different engine torque conditions (6, 8, 10, and 12 Nm) while maintaining a constant engine speed of 2,000 rpm for all fuel types. The results showed that the use of 1-pentanol/diesel blended fuel generally led to a decrease in brake thermal efficiency, attributed to the low calorific value of the blend and the cooling effect due to the latent heat of vaporization. Additionally, both brake specific energy consumption and brake specific fuel consumption increased. However, the use of the blended fuel resulted in a general decrease in NOx concentration, a decrease in CO concentration except some conditions, and a reduction in smoke opacity across all conditions.

직접분사식 압축점화 디젤엔진의 연소 및 배기특성에 관한 연구 (A Study on Combustion and Emission Characteristics in Compression Ignition CRDI Diesel Engine)

  • 김기복;최일동;하지훈;김치원;윤창식
    • 한국산업융합학회 논문집
    • /
    • 제17권4호
    • /
    • pp.234-244
    • /
    • 2014
  • Recently it has been focused that the automobile engine has developed in a strong upward tendency for the use of the high viscosity and poorer quality fuels in achieving the high performance, fuel economy, and emission reduction. Therefore it is not easy to solve the problems between low specific fuel consumption and exhaust emission control at motor cars. In this study, it is designed and used the engine test bed which is installed with turbocharger and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and exhaust emission as operating parameters, and they were engine speeds(rpm), injection timing(bTDC), and engine load(%). From the result of an experimental analysis, peak cylinder pressure and the rate of pressure rise were increased, and the location of it was closer toward top dead center according to the increasing of engine speed and load, and with advancing injection timing. The combustion characteristics are effected by fuel injection timing due to be enhanced the mass burned fraction. Using the engine dynamometer for analyzing the engine performance, the engine torque and power have been enhanced according to advancing the fuel injection timing. In analyzing of exhaust emission, there has been a trade-off between PM and NOx with increasing of engine speed and load, and with advanced injection timing. The experimental data are shown that the formation of NOx has increased and PM, vice versa.

Inedible Vegetable Oil as Substitute Fuel in Compression Ignition Engines-Jatropha Oil

  • No, Soo-Young
    • 한국분무공학회지
    • /
    • 제14권4호
    • /
    • pp.153-162
    • /
    • 2009
  • The use of inedible vegetable oils as substitute for diesel fuel in compression ignition engine is of significance because of the great need for edible oil as food, and the reduction of biodiesel production cost etc. Jatropha curcas oil which is a leading candidate for the commercialization of inedible vegetable oils is selected in this study for reviewing the application in CI engine as an alternative fuel. The important properties of jatropha oil (JO) and JO biodiesel are summarized from the various sources in the literature. It is found that five different types of alternative fuel from JO such as neat JO, JO blends with diesel or other fuel, neat JO biodiesel, JO biodiesel blends with diesel or other fuel and degummed JO were extensively examined in the diesel engine. Two different application types of alternative fuels from JO such as preheating and dual fuelling were also tested, It should be pointed out that most of these applications are limited to single cylinder conditions. The systematic study for the selection of effective application method is required. It is clear that the blends of JOME and diesel can replace diesel fuel up to 10% by volume for running the existing common rail direct injection systems without any durability problems. The systematic assessment of spray characteristics of different types of JO and its derivatives for use as diesel engine fuel is also required.

  • PDF