• Title/Summary/Keyword: CI 모델

Search Result 250, Processing Time 0.024 seconds

Relationship Between Depressive Symptoms and Physical Function(ADL, IADL) Among the Rural Elderlies (농촌지역 노인들의 신체적 기능(ADL, IADL)과 우울수준과의 관련성)

  • Shin, Eun-Sook;Cho, Young-Chae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.201-210
    • /
    • 2012
  • This study was performed to determine the levels of depressive symptoms and to reveal its relationships between ADL and IADL among rural elderlies. The interviews were performed, during the period from April 1st, to June 30th, 2010, to 412 elderlies in rural areas. As a results, the distribution of ADL among all subjects were 94.7% in normal-range group, and 5.3% in impaired group. In terms of IADL, 87.4% of the subjects were normal-range group, 12.6% were impaired group. The distribution of depression group among all subjects were 38.2% in normal-range group of ADL, and 90.9% in impaired group of ADL, but it was 35.8% in normal-range group of IADL, and 76.9% in impaired group of IADL. In logistic regression analysis, the adjusted odds ratio of the depression was significantly increased in impaired group of ADL than in normal-range group of ADL(OR=23.21, 95% CI=4.38~123.05). Also it was significantly increased in impaired group of IADL than in normal-range group of IADL(OR=7.76, 95% CI=2.99~20.08). In conclusion, the depression of rural elderlies was significantly increased in impaired group than in normal-range group of ADL and IADL. Thus, strategic effort needs to be prevented to depression in impaired group of ADL and IADL.

Gene Expression Data Analysis Using Parallel Processor based Pattern Classification Method (병렬 프로세서 기반의 패턴 분류 기법을 이용한 유전자 발현 데이터 분석)

  • Choi, Sun-Wook;Lee, Chong-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.6
    • /
    • pp.44-55
    • /
    • 2009
  • Diagnosis of diseases using gene expression data obtained from microarray chip is an active research area recently. It has been done by general machine learning algorithms, because it is difficult to analyze directly. However, recent research results about the analysis based on the interaction between genes is essential for the gene expression analysis, which means the analysis using the traditional machine learning algorithms has limitations. In this paper, we classify the gene expression data using the hyper-network model that considers the higher-order correlations between the features, and then compares the classification accuracies. And also, we present the new hypo-network model that improve the disadvantage of existing model, and compare the processing performances of the existing hypo-network model based on general sequential processor and the improved hypo-network model implemented on parallel processors. In the experimental results, we show that the performance of our model shows improved and competitive classification performance than traditional machine learning methods, as well as, the existing hypo-network model. We show that the performance is maximized when the hypernetwork model is implemented on our parallel processors.

A Flame Transfer Function with Nonlinear Phase (비선형 위상을 가지는 화염전달함수)

  • Yoon, Myung-Gon;Kim, Jina;Kim, Deasik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.78-86
    • /
    • 2016
  • In this paper we propose a new frame transfer function model describing the variations of a heat release rate in response to an external flow oscillation in gas turbine systems. A critical difference of our model compared to the so-called $n-{\tau}$ model which has been widely used for a prediction of combustion instability (CI), is that our model is able to describe a nonlinear relation between phase and frequency. In contrast, the phase part of the $n-{\tau}$ model is a pure time delay and thus the phase should be a linear function of frequency, which is inconsistent with many experimental results of real combustion systems. For an illustration, our new model is applied to experimental data and the effect of phase nonlinearity is investigated in the context of combustion instability.

3D Content Model Hashing Based on Object Feature Vector (객체별 특징 벡터 기반 3D 콘텐츠 모델 해싱)

  • Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.75-85
    • /
    • 2010
  • This paper presents a robust 3D model hashing based on object feature vector for 3D content authentication. The proposed 3D model hashing selects the feature objects with highest area in a 3D model with various objects and groups the distances of the normalized vertices in the feature objects. Then we permute groups in each objects by using a permutation key and generate the final binary hash through the binary process with the group coefficients and a random key. Therefore, the hash robustness can be improved by the group coefficient from the distance distribution of vertices in each object group and th hash uniqueness can be improved by the binary process with a permutation key and a random key. From experimental results, we verified that the proposed hashing has both the robustness against various mesh and geometric editing and the uniqueness.

A Mesh Watermarking Using Patch CEGI (패치 CEGI를 이용한 메쉬 워터마킹)

  • Lee Suk-Hwan;Kwon Ki-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.1
    • /
    • pp.67-78
    • /
    • 2005
  • We proposed a blind watermarking for 3D mesh model using the patch CEGIs. The CEGI is the 3D orientation histogram with complex weight whose magnitude is the mesh area and phase is the normal distance of the mesh from the designated origin. In the proposed algorithm we divide the 3D mesh model into the number of patch that determined adaptively to the shape of model and calculate the patch CEGIs. Some cells for embedding the watermark are selected according to the rank of their magnitudes in each of patches after calculating the respective magnitude distributions of CEGI for each patches of a mesh model. Each of the watermark bit is embedded into cells with the same rank in these patch CEGI. Based on the patch center point and the rank table as watermark key, watermark extraction and realignment process are performed without the original mesh. In the rotated model, we perform the realignment process using Euler angle before the watermark extracting. The results of experiment verify that the proposed algorithm is imperceptible and robust against geometrical attacks of cropping, affine transformation and vertex randomization as well as topological attacks of remeshing and mesh simplification.

Evolutionally optimized Fuzzy Polynomial Neural Networks Based on Fuzzy Relation and Genetic Algorithms: Analysis and Design (퍼지관계와 유전자 알고리즘에 기반한 진화론적 최적 퍼지다항식 뉴럴네트워크: 해석과 설계)

  • Park, Byoung-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.236-244
    • /
    • 2005
  • In this study, we introduce a new topology of Fuzzy Polynomial Neural Networks(FPNN) that is based on fuzzy relation and evolutionally optimized Multi-Layer Perceptron, discuss a comprehensive design methodology and carry out a series of numeric experiments. The construction of the evolutionally optimized FPNN(EFPNN) exploits fundamental technologies of Computational Intelligence. The architecture of the resulting EFPNN results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining rule-based Fuzzy Neural Networks(FNN) with polynomial neural networks(PNN). FNN contributes to the formation of the premise part of the overall rule-based structure of the EFPNN. The consequence part of the EFPNN is designed using PNN. As the consequence part of the EFPNN, the development of the genetically optimized PNN(gPNN) dwells on two general optimization mechanism: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the EFPNN, the models are experimented with the use of several representative numerical examples. A comparative analysis shows that the proposed EFPNN are models with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

The Analysis and Design of Advanced Neurofuzzy Polynomial Networks (고급 뉴로퍼지 다항식 네트워크의 해석과 설계)

  • Park, Byeong-Jun;O, Seong-Gwon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.3
    • /
    • pp.18-31
    • /
    • 2002
  • In this study, we introduce a concept of advanced neurofuzzy polynomial networks(ANFPN), a hybrid modeling architecture combining neurofuzzy networks(NFN) and polynomial neural networks(PNN). These networks are highly nonlinear rule-based models. The development of the ANFPN dwells on the technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks and genetic algorithms. NFN contributes to the formation of the premise part of the rule-based structure of the ANFPN. The consequence part of the ANFPN is designed using PNN. At the premise part of the ANFPN, NFN uses both the simplified fuzzy inference and error back-propagation learning rule. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. As the consequence structure of ANFPN, PNN is a flexible network architecture whose structure(topology) is developed through learning. In particular, the number of layers and nodes of the PNN are not fixed in advance but is generated in a dynamic way. In this study, we introduce two kinds of ANFPN architectures, namely the basic and the modified one. Here the basic and the modified architecture depend on the number of input variables and the order of polynomial in each layer of PNN structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the ANFPN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed ANFPN can produce the model with higher accuracy and predictive ability than any other method presented previously.

Experience Sensitive Cumulative Neural Network Using RAM (RAM을 이용한 경험유관축적 신경망 모델)

  • 김성진;권영철;이수동
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.95-102
    • /
    • 2004
  • In this paper, Experience Sensitive Cumulative Neural Network (ESCNN) is introduced, which can cumulate the same or similar experiences. As the same or similar training patterns are cumulated in the network, the system recognizes more important information in the training patterns. The functions of forgetting less important information and attending more important information resided in the training patterns are surveyed and implemented by simulations. The system behaves well under the noisy circumstances due to its forgetting and/or attending properties, even in 50 percents noisy environments. This paper also describes the creation of the generalized patterns for the input training patterns.

Feature Subset Selection Algorithm based on Entropy (엔트로피를 기반으로 한 특징 집합 선택 알고리즘)

  • 홍석미;안종일;정태충
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.87-94
    • /
    • 2004
  • The feature subset selection is used as a preprocessing step of a teaming algorithm. If collected data are irrelevant or redundant information, we can improve the performance of learning by removing these data before creating of the learning model. The feature subset selection can also reduce the search space and the storage requirement. This paper proposed a new feature subset selection algorithm that is using the heuristic function based on entropy to evaluate the performance of the abstracted feature subset and feature selection. The ACS algorithm was used as a search method. We could decrease a size of learning model and unnecessary calculating time by reducing the dimension of the feature that was used for learning.

Object-based Image Retrieval for Color Query Image Detection (컬러 질의 영상 검출을 위한 객체 기반 영상 검색)

  • Baek, Young-Hyun;Moon, Sung-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.97-102
    • /
    • 2008
  • In this paper we propose an object-based image retrieval method using spatial color model and feature points registration method for an effective color query detection. The proposed method in other to overcome disadvantages of existing color histogram methods and then this method is use the HMMD model and rough set in order to segment and detect the wanted image parts as a real time without the user's manufacturing in the database image and query image. Here, we select candidate regions in the similarity between the query image and database image. And we use SIFT registration methods in the selected region for object retrieving. The experimental results show that the proposed method is more satisfactory detection radio than conventional method.