• Title/Summary/Keyword: CHP(Combined)

Search Result 82, Processing Time 0.026 seconds

A Study on Measures to Boost the Development of Distributed Generation through Analysis and assessment of the District Electricity Power Business Environment (구역전기사업의 환경분석을 평가를 통한 분산형전원개발 촉진방안에 관한 연구)

  • Kim, Soo-Chul;Yoo, Wang-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1304-1312
    • /
    • 2009
  • The purpose of this study is to build promotive measures and to develop alternative policies of DG(Distributed Generation) by finding and analysing effects of four business environment factors related to DEPB(District Electricity Power Business) on boosting DG. In this study, four business environment factors, which are the electric power industry restructuring, electricity tariff and pricing structure, regulations for DEPB, and conflicts of stake-holding groups, are considered as independent variables. And promotion factors of DG including small CHP(Combined Heat and Power) generation, which is outcome of DEPB, are considered as dependent variables. But dependent variables including booming of new renewable energy generation due to green energy pricing incentives, the electric power industry restructuring, and electricity tariff and pricing policies were separatively considered. In this study, some policies were proposed reflecting research results of empirical demonstrative analysis, previous studies, overseas cases, etc.

Economic Evaluation of Building Micro-Grid Including Geothermal Energy System in Hospital Buildings (지열시스템이 포함된 빌딩마이크로그리드 시스템의 에너지성능평가 및 경제성분석)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.273-277
    • /
    • 2009
  • This paper presents a basic energy performance data of micro gas turbine, Renewable Energy(BIPV and Solar Collector System, geothermal system) and a hybrid energy system(geothermal system and microturbine) installed in Hospital Building. The efficiency of solar collector and BIPV system was 30%, 10% individually, and lower than micro gas turbines. Micro gas turbines are small gas turbines that bum gaseous and liquid fuels to produce a high-energy exhaust gas and to generate the electrical power. Recently, the size range for micro gas turbines is form 30 to 500kW and power-only generation or in combined heat and power(CHP) systems. Finally, in energy performance aspect, Micro gas turbine system and hybrid energy system were high-efficiency system in hospital building. Hybrid energy system also give us a powerful alternative energy system economically.

  • PDF

Visions and Technical Challenges of Hydrogen Economy: Power System Viewpoint

  • Won Dong-Jun;Liu Chen-Ching
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.339-343
    • /
    • 2005
  • Hydrogen, as a future energy source, is thought as an alternative of fossil fuel in view of environment and energy security. Hydrogen has the properties of both fuel and electricity so that it can make the energy paradigm shift in the future. Therefore, researches on hydrogen in power system area are essential and urgent due to their huge effects on current paradigm. In this paper, the visions and technical challenges of hydrogen in power system are reviewed as energy storage, dispersed generation (DG), DC generator, and combined heat and power (CHP).

Power System Concerns in Hydrogen Economy (수소경제하에서의 전력시스템)

  • Won, Dong-Jun;Liu, Chen-Ching;Moon, Seung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.486-488
    • /
    • 2005
  • Hydrogen, as a future energy source, can be a good alternative of fossil fuel in view of environment and energy security. Hydrogen can be both fuel and electricity so that it will greatly change energy paradigm. Therefore, researches on hydrogen in power system area are essential and urgent due to their huge effects. In this paper, the importances and meanings of hydrogen in power system are reviewed as energy storage, DC generator, dispersed generation (DG), and combined heat and power (CHP). Technical challenges in hydrogen economy are also listed.

  • PDF

Short-term generation scheduling in virtual power plant with distribution resources (Virtual power plant를 구성하는 분산전원의 최적 운영)

  • Eum, Young-Chul;Bae, In-Su;Kim, Jin-O;Jo, Jong-Man
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.194-195
    • /
    • 2006
  • 미래의 전력 시스템은 환경과 기술적인 이유로 인해 더욱더 많은 분산전원을 이용하게 될 것이다. 분산전원은 서로 다른 특징을 가지고 있고 또한 배전계통에서 기존의 계통운영과는 다른 형태로 운전될 것이다. 이런 관점에서 다수의 분산전원을 모아 하나의 가상의 발전소로 운영하는 개념이 등장하게 되었는데, 이를 Virtual Power Plant(VPP)라고 한다. VPP는 매니지먼트 시스템이 관리하는 여러 클러스터들로 이루어져 있으며 이들 클러스터들은 각각 여러 종류의 분산전원으로 구성되어 있다. 본 논문에서는 클러스터를 이루는 분산전원을 어떻게 운영하는 것이 최적의 경제적 효율을 지닐 수 있을 지에 대해 논의하게 될 것이다. 디젤 발전기의 출력의 경우 그 소유자에 의해 제어가 가능하지만, 태양광 발전 시스템의 경우 기상 상태에 따라 그 출력이 결정된다. 따라서 이러한 각각의 특성을 고려하여 본 논문에서는 디젤, CHP(Combined Heat and Power), 보일러, 태양광발전으로 구성된 복합 시스템에서 각 시간별로 수용가의 전력 및 열 수요와 분산전원의 에너지 생산을 비교하여 VPP 최적 운영 계획을 구성하였다.

  • PDF

Simulation Model of AC Interconnection System for CHP(Combined Heat and Power) Generation (계통연계형 열병합발전시스템의 시뮬레이션모델)

  • Jeong, Jong-Kyou;Yun, Dong-Jin;Kwon, Ki-Hyun;Han, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.164-166
    • /
    • 2008
  • 본 논문은 계통연계형 열병합발전의 동작특성을 모의하는 시뮬레이션모델에 관해 기술하고 있다. 계통연계형 열병합발전은 가스엔진, 영구자석발전기, 전력변환기로 구성되어 있는데 본 연구에서는 가스엔진은 일정출력을 공급하고 다극형 영구자석발전기에서 생산되는 400Hz 출력을 컨버터와 인버터를 통하여 상용주파수의 교류로 전력계통과 연계하는 것으로 가정하였다 개발된 시뮬레이션모델은 PSCAD/EMTDC를 이용하였고 전력회로는 내장모듈을 그리고 제어기는 C 프로그램으로 직접 개발하였다. 개발된 PSCAD/EMTDC 시뮬레이션모델을 이용한 다양한 시뮬레이션을 실시하여 하드웨어 시뮬레이터를 설계하였다.

  • PDF

Inhibition of pRB Phosphorylation and Induction of p21WAF1/CIP1 Occur During cAMP-induced Growth Arrest in Human Neuroblastoma Cells (인체 신경아세포종에서 cAMP 처리에 의한 pRB의 인산화 억제 및 p21WAF1/CIP1의 유도)

  • Park, Yung-Hyun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.642-650
    • /
    • 2003
  • To develop a new approach to the treatment of neuroblastoma cells we evaluated the effect of cAMP on the Ewing's sarcoma cell line CHP-100. We observed that the proliferation-inhibitory effect of cAMP analogs was due to cell cycle arrest and induction of apoptosis, which was confirmed by observing the morphological changes and DNA fragmentation. DNA flow cytometric analysis revealed that cAMP arrested the cell cycle progression at the G1 phase, which effects were associated with inhibition of phosphorylation of retinoblastoma protein (pRB) and enhanced binding of pRB and the transcription factor E2F-1. cAMP also suppressed the cyclin-dependent kinase (Cdk) 2 and cyclin E-associated kinase activity without changes of their expressions. Furthermore, cAMP induced the levels of Cdk inhibitor $p21^{WAF1/CIP1$ expression and p21 proteins induced by cAMP were associated with Cdk2. Overall, our results identify a combined mechanism involving the inhibition of pRB phosphorylation and induction of p21 as targets for cAMP, and this may explain some of its anti-cancer effects.

The Analysis of Effect in Order to Consider Combined Heat and Power Capacity in the Basic Plan of Long Term Electricity Supply & Demand (전력수급기본계획에 열병합발전 설비 반영시의 효과분석에 관한 연구)

  • Kim, Yong-Ba;Moon, Jung-Ho;Yeon, Jun-Hee;Jung, Hyun-Sung;Woo, Sung-Min;Kim, Mi-Ye
    • Journal of Energy Engineering
    • /
    • v.16 no.1 s.49
    • /
    • pp.22-31
    • /
    • 2007
  • This paper addresses methodology in order to consider CHP (Combined Heat and Power) capacity in the Basic Plan of Long Term Electricity Supply & Demand and presents effects on it. The method performs state in extent that do not change maximum in the Basic Plan of Long Term Electricity Supply & Demand. For analysis that occurs some advantage this method compares with Basic Plan of Long Term Electricity Supply & Demand. It includes EES (Expected Energy Served), Fuel consumption, amount of $CO_{2}$ emission reduction.

Case Study and Evaluation of Economic Feasibility of Combined Heat and Power System using Woodchip Biomass (우드칩 바이오매스를 이용한 열병합발전 운영 사례 분석)

  • Suh, Gill Young;Kim, Sung Hyun
    • New & Renewable Energy
    • /
    • v.8 no.4
    • /
    • pp.21-29
    • /
    • 2012
  • The extensible supply of New & Renewable energy resources desperately needs to counter the high dependence on imported energy, recent high oil prices and the Climate Change Conference, and the government has operated the 'Renewable Portfolio Standard' (RPS) as one of the renewable energy policy from 2012. By analyzing the operation case of combined heat and power plant using the woodchip biomass, we drew the price of wood chip fuel, plant capacity factor, electricity selling price, heat selling price and LCOE value. After analyzing the economic feasibility of 3MWe combined heat and power plant based on the operating performance, the minimum of economic feasibility has appeared to be secured according to the internal rate of return (IRR) is 6.34% and the net present value (NPV) is 3.6 billion won as of 20 years life time after installation, and after analyzing the cases of the economic feasibility of the price of wood chip, plant capacity factor, electricity and heat selling price are changed, the economic feasibility is valuable when the price of wood chip is over 64,000 won/ton, NPV is minus, and the capacity factor is above 46.9%, the electricity selling price is 116 won/kWh and the heat selling price is above 75,600 won/Gcal. When going over the new installation hereafter, we need the detailed review of the woodchip storage and woodchip feeding system rather than the steam-turbine and boiler which have been inspected many times, the reason why is it's hard to secure the suitable quality (constant size) of woodchip by the lack of understanding about it as a fuel because of the domestic poor condition and the calorific value of woodchip is seriously volatile compared with other fuels.

A Study for the Methodology of Analyzing the Operation Behavior of Thermal Energy Grids with Connecting Operation (열 에너지 그리드 연계운전의 운전 거동 특성 분석을 위한 방법론에 관한 연구)

  • Im, Yong Hoon;Lee, Jae Yong;Chung, Mo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.3
    • /
    • pp.143-150
    • /
    • 2012
  • A simulation methodology and corresponding program based on it is to be discussed for analyzing the effects of the networking operation of existing DHC system in connection with CHP system on-site. The practical simulation for arbitrary areas with various building compositions is carried out for the analysis of operational features in both systems, and the various aspects of thermal energy grids with connecting operation are highlighted through the detailed assessment of predicted results. The intrinsic operational features of CHP prime movers, gas engine, gas turbine etc., are effectively implemented by realizing the performance data, i.e. actual operation efficiency in the full and part loads range. For the sake of simplicity, a simple mathematical correlation model is proposed for simulating various aspects of change effectively on the existing DHC system side due to the connecting operation, instead of performing cycle simulations separately. The empirical correlations are developed using the hourly based annual operation data for a branch of the Korean District Heating Corporation (KDHC) and are implicit in relation between main operation parameters such as fuel consumption by use, heat and power production. In the simulation, a variety of system configurations are able to be considered according to any combination of the probable CHP prime-movers, absorption or turbo type cooling chillers of every kind and capacity. From the analysis of the thermal network operation simulations, it is found that the newly proposed methodology of mathematical correlation for modelling of the existing DHC system functions effectively in reflecting the operational variations due to thermal energy grids with connecting operation. The effects of intrinsic features of CHP prime-movers, e.g. the different ratio of heat and power production, various combinations of different types of chillers (i.e. absorption and turbo types) on the overall system operation are discussed in detail with the consideration of operation schemes and corresponding simulation algorithms.