• 제목/요약/키워드: CHANGE OF THE DENSITY

Search Result 2,974, Processing Time 0.029 seconds

Evaporating Particle Behaviors and plasma Parameters by Spectroscopic Method in laser Welding (레이저 용접시 분광학적 수법에 의한 증발입자의 거동과 플라즈마 물성의 계측)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.514-522
    • /
    • 1999
  • The laser-induced plasma affects greatly on the results of welding process. moreover selective evaporation loss of alloying elements leads to change in chemical composition of weld metal as well as the mechanical properties of welded joint. this study was undertaken to obtain a fundamental knowledge of pulsed laser welding phenomena especially evaporation mechanism of different aluminum alloys. The intensities of molecular spectra of AlO and MgO were different each other depeding on the power density of a laser beam Under the low power density condition the MgO band spectrum was predominant in intensity while the AlO spectra became much stronger with an increase in the power density. These behaviors have been attributed to the difference in evaporation phenomena of Al and Mg metals with different boiling points and latent heats of vaporization. The time-averaged plasma temperature and electron number density were determined by spectroscopic methods and consequently the obtained temperature was $3,280{\pm}150K$ and the electron number density was $1.85{\times}10^{19}\;l/m^3$.

  • PDF

The Fundamental Study on Thermal Conductivity with Variation Density of Light Weight Foam Concrete and Iron plate structure (경량기포콘크리트의 밀도변화에 따른 열전도 특성에 관한 기초적 연구)

  • Choi, Hun-Gug;Jung, Eun-Hye;Kang, Cheol;Lee, Eun-Young;Kim, Dae-Yeon;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.849-852
    • /
    • 2006
  • The lightweight foamed concrete is superior to properties of insulation and light-weight because it is included in many inner pore. So, lightweight foamed concrete used to construction field that need to property of insulation. The property of insulation of lightweight foamed concrete is varied with density. Also, Density is varied with hardening matrix and pore rate. The purpose of the experiment is to know thermal properties of specimen according to the change of density when heating the specimen. As a result of this experiment, the higher density, the lower temperature of mold. this tendency isn't same as ordinary lightweight foamed concrete, and then density 0.9 is expressed most low temperature result also the discontinuity of shape of mold was efficient for the prevention of the temperature rise.

  • PDF

A study on the change in the characteristic of outdoor planning of Korean public Apartment Project (우리나라 공영 아파트단지의 외부공간의 특성 변천에 관한 연구)

  • 손세관;강경호
    • Journal of the Korean housing association
    • /
    • v.12 no.4
    • /
    • pp.1-8
    • /
    • 2001
  • The purpose of this study is to clarify the change of the Korean public Apartment Project especially in the field of lay-out and site planning of apartment complex. the chronological study is about the change in the location of apartment, its area, its density, the construction of its open space. As a result, the analysis of this researching process of them has shown us the following important factors in the change of the Korean public Apartment Project.

  • PDF

Influence of Reinforcing Systems on Thermal Aging Behaviors of NR Composites (충전 시스템이 NR 복합체의 열노화 거동에 미치는 영향)

  • Choi, Sung-Seen;Kim, Jong-Chul
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.237-244
    • /
    • 2011
  • Five natural rubber (NR) composites with different reinforcing systems of unfilled, carbon black, carbon black with silane coupling agent, silica, and silica with silane coupling agent were thermally aged and change of the crosslink densities by the accelerated thermal aging was investigated. The crosslink densities on the whole increased as the aging time elapsed irrespective of the reinforcing systems. The crosslink density changes became noticeable by increasing the aging temperature. For carbon black-filled composites, the silane coupling agent made the crosslink density change to be increased. For silica-filled composites, however, the silane coupling agent made the crosslink density increment reduced at 60 and $70^{\circ}C$ and it hardly affect the degree of the crosslink density change at 80 and $90^{\circ}C$. The activation energies for the crosslink density changes of the carbon black-filled samples increased continuously in a logarithmic fashion, whereas that of the silica-filled one showed a quasi-steady state ranges at aging times of 30-150 days. The activation energy of the unfilled sample increased exponentially with the aging time. The experimental results were explained with sulfur donation from the silane coupling agent, surface modification of the filler by the silane coupling agent, adsorption of curative residues on the silica surface, and release of the adsorbed curative residues.

The Behavior of Dry Sand under Dynamic Loading -A Study on the Vertical Vibration (건조사질토의 동적거동 -수직진동에 의한 연구)

  • Kim, Su-Il;Jeong, Sang-Seom;An, Yeong-Hun
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.37-48
    • /
    • 1995
  • The dynamic behavior of dry sand under different vibration conditions is studied through laboratory experiments. Sinusoidal and random vibration experiments of sand are carried out in vertical direction under various surcharge loads. Five different sand samples are selected for the azperiment. They are composed of four different -size samples of particles and one sample which is simulated the field condition. In case of sinusoidal vibration, the change in relative density is measured with acceleration levels. To produce an acceleration, the vibration amplitude is maintained within the range of 0.4mm~0.6mm and the vibration frequency is changed within the range of 3Hz~40Hz. In case of random vibration, the combined sinusoidal acceleration is produced by a random vibration generator and the change in relative density is measured by an accelerometer. Based on the experimental results, it is found that the sandy soil is compacted to 94%~99% of relative density by vertical acceleration and the peak acceleration producing the maximum relative density is proportional to the difference between maximum and minimum void ratios. It is also found that the effect of surcharge loading : the greater the surcharge loading, the larger the change in relative density and the greater the acceleration required to change the relative density.

  • PDF

A Unified Analysis of Low-Power and High-Power Density Laser Welding Processes with Evolution of Free Surface (자유표면변형을 고려한 저에너지밀도 및 고에너지밀도 레이저 용접공정 통합 해석)

  • Ha Eung-Ji;Kim Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1111-1118
    • /
    • 2005
  • In this study, a unified numerical investigation has been performed on the evolution of weld pool and key-hole geometry during low-power and high-power density laser welding. Unsteady phase-change heat transfer and fluid flow with the surface tension are examined. The one-dimensional vaporization model is introduced to model the overheated surface temperature and recoil pressure during high-power density laser welding. It is shown that Marangoni convection in the weld pool is dominant at low-power density laser welding, and the keyhole with thin liquid layer and the hump are visible at high-power density laser welding. It is also shown that the transition from conduction welding to penetration welding fur iron plate exists when the laser power density is about $10^6W/Cm^2$.

Evaluation of Plasma Characteristics for Hg-Ar Using LIF (LIF를 이용한 Hg-Ar 플라즈마 특성 평가)

  • Moon, Jong-Dae
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.79-83
    • /
    • 2008
  • In this paper, we introduced a LIF measurement method and summarized the theoretical side. When an altered wavelength of laser and electric power, lamp applied electric power, we measured the relative density of the metastable state in mercury after observing a laser induced fluorescence signal of 404.8nm and 546.2nm, and confirmed the horizontal distribution of plasma density in the discharge lamp. Due to this generation, the extinction of atoms in a metastable state occurred through collision, ionization, and excitation between plasma particles. The density and distribution of the metastable state depended on the energy and density of plasma particles, intensely. This highlights the importance of measuring density distribution in plasma electric discharge mechanism study. The results confirmed the resonance phenomenon regarding the energy level of atoms along a wavelength. change, and also confirmed that the largest fluorescent signal in 436nm, and that the density of atoms in 546.2nm ($6^3S_1{\to}6^3P_2$) were larger than 404.8nm ($6^3S_1{\to}6^3P_2$). According to the increase of lamp applied electric power, plasma density increased, too. When increased with laser electric power, the LIF signal reached a saturation state in more than 2.6mJ. When partial plasma density distribution along a horizontal axis was measured using the laser induced fluorescence method, the density decreased by recombination away from the center.

The Effect of Pad Groove Density on CMP Characteristics (패드 그루브의 밀도변화가 연마특성에 미치는 영향)

  • Park Kihyun;Jung Jaewoo;Lee Hyunseop;Seo Heondeok;Jeong Seokhun;Lee Sangjik;Jeong Haedo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.27-33
    • /
    • 2005
  • Polishing pads play an important role in chemical mechanical polishing(CMP) which has recently been recognized at the most effective method to achieve global planarization. In this paper, we have investigated CMP characteristics as a change of groove density of polishing pads. The parameter $(K_n)$ is proposed to estimate groove density of pad. The $K_n$ is defined as groove area divided by pitch area. As the groove density value increased, removal rate increased to some point and then gradually saturated in case of increasing the groove density excessively. In addition Within wafer non-uniformity(WIWNU) worse as groove density increased excessively, although WIWNU improved as groove density increased. Also the uniformity of temperature of pad surface decreased as the groove density increased. It was because that the cooling effect increased as groove density increased. In other words, increasing the groove density which means the apparent contact area of pad has influence on amount of discharge of slurry during polishing process.

An Empirical Study on the Fitness of Casting Body the Variation of Density of Phosphate Bonded Investment's Special Liquid (인산염 매몰재 special liquid의 농도변화에 따른 주조체 적합도에 관한 실험적 연구)

  • Kim, Eun-Sook
    • Journal of Technologic Dentistry
    • /
    • v.19 no.1
    • /
    • pp.55-61
    • /
    • 1997
  • To observe the difference of the special liquid influencing to the fitness of casting body among the many elements influencing to the die fitness of the casting body, we fit L/P ratio each investment, using two kinds of phosphate bonded investment, divided the density of the special liquid by 5 groups(Density 100, 75, 50, 25, 0), made 10 copying per each group and experiment 10 groups, totally 100 copying and finally we could get the result as following ; 1) In such a case of CB-30, the casting fitness of the density 100 of special liquid, group 6, was the best and in order of the density 75, 50, 25, 0 the fitness is better. 2) In such of Denti-vest, the fitness of the density 100 of the special liquid, group 1, was the best and in order of the density 75, 50, 25, 0 the fitness is better. 3) Therefore we should change the density according to the transformation of the environment as investing because of increasing the expansion of phosphate bonded investment, as increasing the density of the special liquid.

  • PDF

Microstructure and Mechanical Property of Irradiated Zr-2.5Nb Pressure Tube in Wolsong Unit-1

  • 김영숙;안상복;오동준;김성수;정용무
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.241-241
    • /
    • 1999
  • With the aim of assessing the degradation of Zr-2.5Nb pressure tubes operating in the Wolsong unit-1 nuclear power plant, characterization tests are being conducted on irradiated Zr-2.5Nb tubes removed after 10-year operation. The examined tube had been exposed to temperatures ranging from 264 to 306℃ and a neutron fluence of 8.9×$10^{21}$ n/cm²(E>1 MeV) at the maximum. Tensile tests were carried out at temperatures ranging from RT to 300℃. The density of a-type and c-type dislocations was examined on the irradiated Zr-2.5Nb tube using a transmission electron microscope. Neutron irradiation up to 8.9×$10^{21}$ n/cm²(E>1 MeV) yielded an increase in a-type dislocation density of the Zr-2.5Nb pressure tube to 7.5×$10^{14} m^{-2}$, which was highest at the inlet of the tube exposed to the low temperature of 275℃. In contrast, the c-component dislocation density did not change with irradiation, keeping an initial dislocation density of 0.8×$10^{14} m^{-2}$ over the whole length of the tube. As expected, the neutron irradiation increased mechanical strength by about 17-26% in the transverse direction and by 34-39% in the longitudinal direction compared to that of the unirradiated tube at 300℃. The change in the mechanical properties with irradiation is discussed in association with the microstructural change as a function of temperature and neutron fluence.