• Title/Summary/Keyword: CH4 Reforming

Search Result 125, Processing Time 0.022 seconds

Characteristics of Rotating arc Plasma in $CH_4$ Reforming (메탄 개질에서의 회전 아크 플라즈마 특성)

  • Lee, Dae-Hoon;Kim, Kwan-Tae;Cha, Min-Suk;Song, Young-Hoon;Kim, Dong-Hyun
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.144-148
    • /
    • 2006
  • Characteristics of a plasma reactor for partial oxidation of methane, especially focused on the role and effectiveness of plasma chemistry, is investigated. Partial oxidation of methane is investigated using a rotating arc which is a three dimensional version of a typical glidingarc. The rotating arc has both the characteristics of equilibrium and non-equilibrium plasma. Non-equilibrium characteristics of the rotating gliding arc can be increased by rotating an elongated arc string attached at both the tip of inner electrode and the edge of outer electrode. In this way, plasma chemistry can be enhanced and hydrogen selectivity can reach almost 100% that is much higher than thermal equilibrium condition. As a result, the present study enables the strategic approach of the plasma reforming process by means of appropriate reactor design to maximize plasma effect and resulting in maximized reaction efficiency.

  • PDF

Production of Hydrogen-Rich Gas from Methane by a Thermal Plasma Reforming (고온 플라즈마 개질에 의한 메탄으로부터 고농도 수소생산)

  • Kim, Seong-Cheon;Lim, Mun-Sup;Chun, Young-Nam
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.362-370
    • /
    • 2006
  • The purpose of this paper was to investigate the reforming characteristics and optimum operating condition of the plasmatron assisted $CH_4$ reforming reaction for the hydrogen-rich gas production. Also, in order to increase the hydrogen production and the methane conversion rate, parametric screening studies were conducted, in which there were the variations of the $CH_4$ flow ratio, $CO_2$ flow ratio, vapor flow ratio, mixing flow ratio and catalyst addition in reactor. High temperature plasma flame was generated by air and arc discharge. The air flow rate and input electric power were fixed 5.1 l/min and 6.4 kW, respectively. When the $CH_4$ flow ratio was 38.5%, the production of hydrogen was maximized and optimal methane conversion rate was 99.2%. Under these optimal conditions, the following synthesis gas concentrations were determined: $H_2$, 45.4%; CO, 6.9%; $CO_2$, 1.5%; and $C_2H_2$, 1.1%. The $H_2/CO$ ratio was 6.6, hydrogen yield was 78.8% and energy conversion rate was 63.6%.

Kinetic Investigation of CO2 Reforming of CH4 over Ni Catalyst Deposited on Silicon Wafer Using Photoacoustic Spectroscopy

  • Yang, Jin-Hyuck;Kim, Ji-Woong;Cho, Young-Gil;Ju, Hong-Lyoul;Lee, Sung-Han;Choi, Joong-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1295-1300
    • /
    • 2010
  • The $CO_2-CH_4$ reaction catalyzed by Ni/silicon wafers was kinetically studied by using a photoacoustic technique. The catalytic reaction was performed at various partial pressures of $CO_2$ and $CH_4$ (50 Torr total pressure of $CO_2/CH_4/N_2$) in the temperature range of 500 - $650^{\circ}C$ in a static reactor system. The photoacoustic signal that varied with the $CO_2$ concentration during the catalytic reaction was recorded as a function of time. Under the reaction conditions, the $CO_2$ photoacoustic measurements showed the as-prepared Ni thin film sample to be inactive for the reaction, while the $CO_2/CH_4$ reactions carried out in the presence of the sample pre-treated in $H_2$ at $600^{\circ}C$ were associated with significant time-dependent changes in the $CO_2$ photoacoustic signal. The rate of $CO_2$ disappearance was measured from the $CO_2$ photoacoustic signal data in the early reaction period of 50 - 150 sec to obtain precise kinetic data. The apparent activation energy for $CO_2$ consumption was determined to be 6.9 kcal/mol from the $CO_2$ disappearance rates. The partial reaction orders, determined from the $CO_2$ disappearance rates measured at various $PCO{_2}'S$ and $PCH{_4}'S$ at $600^{\circ}C$, were determined to be 0.33 for $CH_4$ and 0.63 for $CO_2$, respectively. Kinetic data obtained in these measurements were compared with previous works and were discussed to construct a catalytic reaction mechanism for the $CO_2-CH_4$ reaction over Ni/silicon wafer at low pressures.

Study on Basic Characteristics of Natural Gas Autothermal Reformer for Fuel Cell Applications (연료전지용 천연가스 자열개질기의 기초특성 연구)

  • Lim, Sung-Kwang;Nam, Suk-Woo;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.850-857
    • /
    • 2006
  • Hydrogen production using current fueling facilities is essential for near-term applications of fuel cells. A preliminary process for developing a natural gas autothermal reforming (ATR) reactor for fuel cells is presented in this paper. A experimental reactor for methane ATR was constructed and used for characterization of Jin reactor. Temperature profiles of the reactor were observed, and reformed gas compositions were analyzed to evaluate efficiency, conversion and reaction heat with varying amounts of $O_2/CH_4$ at selected furnace temperature and $H_2O/CH_4$. The amount of $O_2/CH_4$ showed strong offsets on reactor temperature, efficiency and conversion indicating that $O_2/CH_4$ is a crucial operation condition. Operation conditions which result in thermal neutrality of ATR reactor system were determined for two cases of an ATR system based on the estimation of enthalpy difference between reactants of assumed inlet temperatures and the products from experimental results. The determined conditions for thermally neutral operations could be used for guidelines to design reformers and for determining the operation parameters of a self sustaining ATR reactor.

The Kinetic Study of Carbon Deposition in CO2 Reforming of CH4 (메탄의 이산화탄소 개질반응의 탄소퇴적속도에 관한 연구)

  • Lee, Dong-Kyu;Lee, Sung-Hee;Hwang, Kap-Sung;Kwon, Young-Du
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.337-341
    • /
    • 2005
  • This paper reports the study on coking rate and carbon formation route as a function of reaction temperature using the Ni catalysts in the $CO_2$ reforming of methane. In this paper, carbon deposition on catalysts and its kinetics during reforming reaction were studied by using a thermogravimetric analyzer. Kinetic studies show that reaction orders of carbon formation obtained 1.33 ($CH_4$) and -0.52 ($CO_2$) by experiments on partial pressure of reactant gas, respectively. On the basis of model equation, the kinetic parameters for the coking reaction at different temperatures indicated that methane decomposition dominated carbon formation at lower temperatures ($<600^{\circ}C$), while $CH_4$decomposition and Boudouard reactions become significant for coking in the temperature range of $600{\sim}700^{\circ}C$.

Analyzing Operational Efficiency of GTL Reforming Process by using Aspen Plus (Aspen Plus를 이용한 GTL Reforming 공정별 운전효율 비교)

  • Bae, Jihan;Kim, Yongheon;Kim, Jaeho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.143-143
    • /
    • 2010
  • GTL(Gas-to-Liquids)공정 중 합성가스 제조공정(Reforming Process)인 ATR(Auto-Thermal Reforming), SCR(Steam Carbon Reforming), POx(Partial Oxidation)의 시뮬레이션 연구를 수행하였다. Reforming 공정에서 생산된 합성가스는 GTL 합성유 제조공정인 FT(Fischer-Thropsch) 반응기로 주입되며, 합성유 생산에 최적의 효율을 보이는 H2/CO 비(합성가스에 포함된 반응물비)는 2.0으로 알려져 있다. FT공정은 합성가스를 원료로 고온 및 고압 반응을 거쳐 GTL 공정의 최종 생산품인 FT합성유를 제조하는 공정이다. 본 연구에서는 FT공정 효율 극대화를 위해 reforming 공정에서 생성되는 합성가스 내 H2/CO의 비를 2로 수렴토록 모사조건을 설정하였으며, 상기 조건을 만족하는 reforming 공정들의 운전 온도 및 feed 조성을 분석하고 비교하고자 한다. 현재 GTL 플랜트관련 산업계에 적용 혹은 주 연구대상인 reforming 공정으로는 ATR, SCR, POx 공정이 있다. ATR 공정은 $850{\sim}1100^{\circ}C$에서 메탄, 스팀 및 산소를 원료로 활용하여 H2 및 CO를 생산하는 공정으로 발열/흡열 반응이 상존하여 에너지 비용이 낮지만 공정구조 상 열회수설비 및 ASU(Air Separation Unit)이 필요하기에 CAPEX(초기설비 설치비용)가 높은 편이다. SCR공정은 CH4, Steam 및 CO2를 연료로 하기에 이산화탄소가 일정부분 포함된 가스전에도 적용이 가능하나 공정 운전 중 지속적으로 외부에서 열을 공급해야 하기에 에너지 투입비용이 높은편이며, 탄소침적의 문제가 있어 대용량 플랜트에는 적합하지 않다. POx공정은 약 $1,500^{\circ}C$의 고온에서 CH4가 O2에 의해 부분 산화되는 방식으로 촉매가 필요없어 설비비가 타 공정에 비해 저렴하나 생산가스의 H2/CO비가 다소 낮아 전체적인 GTL 공정효율이 저하되는 단점이 있다. 상기 세 공정은 GTL 산업계에서 실증 및 효율증대를 위해 주로 연구되는 공정이기에 본 연구의 분석대상으로 설정하였다. 본 연구에서는 상용공정모사기인 Aspen Plus를 활용하여 reforming 공정별로 FT합성공정의 최적 조건(H2/CO=2)을 만족하는 합성가스 생산조건 분석 및 비교를 수행할 예정이다. 운전조건인 공정 운전온도 및 feed 가스조성 등을 모사하기 위해 합성가스 reforming 공정을 모델링하고 공급유량 및 압력 등의 운전변수는 GTL국책과제 1단계 연구수행 결과를 토대로 선정하고자 한다. GTL공정의 경우, 설비의 운전조건이나 연료가스의 구성 및 유량에 따라 적합한 reforming 공정이 다르기에 본 시뮬레이션 결과를 향후 GTL 플랜트 공정모델 설계시 reforming 공정선정에 참고자료로 활용하고자 한다.

  • PDF

Hydrogen Production from Ethanol Steam Reforming over SnO2-K2O/Zeolite Y Catalyst

  • Lee, Jun-Sung;Kim, Ji-Eun;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1912-1920
    • /
    • 2011
  • The $SnO_2$ with a particle size of about 300 nm instead of Ni is used in this study to overcome rapid catalytic deactivation by the formation of a $NiAl_2O_4$ spinal structure on the conventional Ni/${\gamma}$-$Al_2O_3$ catalyst and simultaneously impregnated the catalyst with potassium (K). The $SnO_2-K_2O$ impregnated Zeolite Y catalyst ($SnO_2-K_2O$/ZY) exhibited significantly higher ethanol reforming reactivity that that achieved with $SnO_2$ 100 and $SnO_2$ 30 wt %/ZY catalysts. The main products from ethanol steam reforming (ESR) over the $SnO_2$-$K_2O$/ZY catalyst were $H_2$, $CO_2$, and $CH_4$, with no evidence of any CO molecule formation. The $H_2$ production and ethanol conversion were maximized at 89% and 100%, respectively, over $SnO_2$ 30 wt %-$K_2O$ 3.0 wt %/ZY at 600 $^{\circ}C$ for 1 h at a $CH_3CH_2OH:H_2O$ ratio of 1:1 and a gas hourly space velocity (GHSV) of 12,700 $h^{-1}$. No catalytic deactivation occurred for up to 73 h. This result is attributable to the easier and weaker of reduction of Sn components and acidities over $SnO_2-K_2O$/ZY catalyst, respectively, than those of Ni/${\gamma}$-$Al_2O_3$ catalysts.

A Study on Reforming Reaction for Preparation of Synthesis Gas from Land-Fill Gas (매립지가스(LFG)로부터 합성가스 제조를 위한 개질반응 연구)

  • Cho, Wooksang;Yoon, Jungsup;Park, Sunggyu;Mo, Yongki;Baek, Youngsoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.570-576
    • /
    • 2014
  • LFG (Land-Fill Gas) includes components of $CH_4$, $CO_2$, $O_2$, $N_2$, and water. The preparation of synthesis gas from LFG as a DME (Dimethyl Ether) feedstock was studied by methane reforming of $CO_2$, $O_2$ and steam over NiO-MgO-$CeO_2$/$Al_2O_3$ catalyst. Our experiments were performed to investigate the effects of methane conversion and syngas ratio on the amount of LFG components over NiO-MgO-$CeO_2$/$Al_2O_3$ catalyst. Results were obtained through the activity reaction experiments at the temperature of $900^{\circ}C$ and GHSV of 4,000. The results were as following; it has generally shown that methane conversion rate increased with the increase of oxygen and carbon dioxide amounts. Highly methane conversion of 92~93% and syngas ratio of approximately 1.0 were obtained in the feed of gas composition flow-rate of 243ml/min of $CH_4$, 241ml/min of $CO_2$, 195ml/min of $O_2$, 48ml/min of $N_2$, and 360ml/min of water, respectively, under reactor pressure of 15 bar for 50 hrs of reaction time. Also, it was shown that catalyst deactivation by coke formation was reduced by excessively adding oxygen and steam as an oxidizer of the methane reforming.

Influence of Ni/CeO2-ZrO2 Catalysts on Methane Autothermal Reforming (메탄 자열개질 반응에 대한 Ni/CeO2-ZrO2 촉매의 영향)

  • Kang, Min Goo;Lee, Tae Jun;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • The catalytic behavior of $Ni/Ce_XZr_{(1-X)}O_2$ loaded on the alumina coated honeycomb monolith was studied for the autothermal reforming reaction of methane. Among the catalysts with the different Ce/Zr ratios, the $Ni/Ce_{0.80}Zr_{0.20}O_2$ Catalyst showed the highest conversion of methane. By investigating the effect of Ni content on the $Ni/Ce_{0.80}Zr_{0.20}O_2$ catalysts, the catalyst loaded with 15wt% Ni had the highest activity. Also, $H_2$ yield was increased as $H_2O/CH_4$ ratio increased. Methane conversion was improved as $O_2/CH_4$ ratio was increased, whereas the yield of $H_2$ was decreased. Among the catalysts tested for 30 hours, $Ni(15wt%)/Ce_{0.80}Zr_{0.20}O_2$ showed the excellent conversion(${\geq}99%$) of methane and the stability at the condition of $GHSV=30,000h^{-1}$, feed ratio S/C/O=2/1/0.5 and reaction temperature $800^{\circ}C$.

Biogas Reforming through Microwave Receptor Heating (마이크로웨이브 수용체 가열을 통한 바이오가스 개질)

  • Young Nam Chun;June An
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.126-134
    • /
    • 2024
  • Biogas, composed mainly of methane (CH4) and carbon dioxide (CO2), is a renewable gas that can serve as an alternative energy source. In this study, we developed a new microwave reformer and analyzed its reforming characteristics. We observed that higher temperatures of the microwave receptor led to increased reforming efficiency. By supplying appropriate amounts of methane and steam, we could prevent carbon generated from the thermal decomposition reaction of carbon dioxide from depositing on the catalytic active layer, thus avoiding the inhibition of catalytic activity. Hydrogen generation was enhanced when maintaining the biogas ratio and steam supply at adequate levels. Increasing the SiC ratio in the receptor improved the uniformity of temperature distribution and growth rate, resulting in higher conversion rates of the reforming process.