DOI QR코드

DOI QR Code

Biogas Reforming through Microwave Receptor Heating

마이크로웨이브 수용체 가열을 통한 바이오가스 개질

  • Young Nam Chun (Department of Environmental Engineering, Chosun University) ;
  • June An (Department of Environmental Engineering, Chosun University)
  • Received : 2023.11.27
  • Accepted : 2023.12.18
  • Published : 2024.03.25

Abstract

Biogas, composed mainly of methane (CH4) and carbon dioxide (CO2), is a renewable gas that can serve as an alternative energy source. In this study, we developed a new microwave reformer and analyzed its reforming characteristics. We observed that higher temperatures of the microwave receptor led to increased reforming efficiency. By supplying appropriate amounts of methane and steam, we could prevent carbon generated from the thermal decomposition reaction of carbon dioxide from depositing on the catalytic active layer, thus avoiding the inhibition of catalytic activity. Hydrogen generation was enhanced when maintaining the biogas ratio and steam supply at adequate levels. Increasing the SiC ratio in the receptor improved the uniformity of temperature distribution and growth rate, resulting in higher conversion rates of the reforming process.

Keywords

Acknowledgement

이 논문은 2023년 조선대학교 학술연구비의 지원을 받아 연구되었습니다.

References

  1. Heo, N.H., Lee, S.H., and Kim, B.K., 2008, "Biogas production and utilization technologies form organic waste", New. Renew. Energy, 4(2), 21-30.
  2. Li, L., Wang, H., Jiang, X., Song, Z., Zhao, X., and Ma, C., 2016, "Microwave-enhanced methane combined reforming by CO2 and H2O into syngas production on biomass-derived char", Fuel, 185, 692-700. https://doi.org/10.1016/j.fuel.2016.07.098
  3. Xu, L., Liu, Y., Li, Y., Lin, Z., Ma, X., Zhang, Y., Argyle, M.D., and Fan, M., 2014, "Catalytic CH4 reforming with CO2 over activated carbon based catalysts", Appl. Catal. A Gen., 469, 387-397. https://doi.org/10.1016/j.apcata.2013.10.022
  4. Dominguez, A., Fernandez, Y., Fidalgo, B., Pis, J.J., and Menendez, J.A., 2007, "Biogas to syngas by microwave-assisted dry reforming in the presence of char", Energy Fuels, 21(4), 2066-2071. https://doi.org/10.1021/ef070101j
  5. Zhang, G., Dong, Y., Feng, M., Zhang, Y., Zhao, W., and Cao, H., 2010, "CO2 reforming of CH4 in coke oven gas to syngas over coal char catalyst", Chem. Eng. J., 156(3), 519-523. https://doi.org/10.1016/j.cej.2009.04.005
  6. Singha, R.K., Shukla, A., Yadav, A., Adak, S., Iqbal, Z., Siddiqui, N., and Bal, R., 2016, "Energy efficient methane tri-reforming for synthesis gas production over highly coke resistant nanocrystalline Ni-ZrO2 catalyst", Appl. Energy, 178, 110-125. https://doi.org/10.1016/j.apenergy.2016.06.043
  7. Fakeeha, A.H., Naeem, M.A., Khan, W.U., and Al-Fatesh, A.S., 2014, "Syngas production via CO2 reforming of methane using Co-Sr-Al catalyst", J. Ind. Eng. Chem., 20(2), 549-557. https://doi.org/10.1016/j.jiec.2013.05.013
  8. Bao, Z., Lu, Y., Han, J., Li, Y., and Yu, F., 2015, "Highly active and stable Ni-based bimodal pore catalyst for dry reforming of methane", Appl. Catal. A-Gen, 491, 116-126. https://doi.org/10.1016/j.apcata.2014.12.005
  9. Tu, X., and Whitehead, J.C., 2014, "Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials", Int. J. Hydrog. Energy, 39(18), 9658-9669. https://doi.org/10.1016/j.ijhydene.2014.04.073
  10. Tao, X., Bai, M., Li, X., Long, H., Shang, S., Yin, Y., and Dai, X., 2011, "CH4-CO2 reforming by plasma-challenges and opportunities", Prog. Energy Combust. Sci., 37(2), 113-124. https://doi.org/10.1016/j.pecs.2010.05.001
  11. Bai, Z., Chen, H., Li, W., and Li, B., 2006, "Hydrogen production by methane decomposition over coal char", Int. J. Hydrog., 31(7), 899-905. https://doi.org/10.1016/j.ijhydene.2005.08.001
  12. Calo, J.M., and Perkins, M.T., 1987, "A heterogeneous surface model for the "steady-state" kinetics of the boudouard reaction", Carbon, 25(3), 395-407. https://doi.org/10.1016/0008-6223(87)90011-X
  13. Menendez, J.A., Juarez-Perez, E.J., Ruisanchez, E., Bermudez, J.M., and Arenillas, A., 2011, "Ball lightning plasma and plasma arc formation during the microwave heating of carbons", Carbon, 49(1), 346-349. https://doi.org/10.1016/j.carbon.2010.09.010