• 제목/요약/키워드: CFUBMS

검색결과 15건 처리시간 0.019초

CFUBMS을 이용한 ZrCrAIN 나노복합 박막의 구조와 기계적 특성 (Structure and Mechanical Characteristics of ZrCrAIN Nanocomposite Thin Films by CFUBMS)

  • 김연준;이호영;신경식;정우성;한전건
    • 한국표면공학회지
    • /
    • 제38권5호
    • /
    • pp.183-187
    • /
    • 2005
  • The quaternary ZrCrAIN nanocomposite thin films are synthesized by Closed-Field Unbalanced Magnetron Sputtering (CFUBMS). Microstructure and mechanical properties of ZrCrAIN nanocomposite thin films are studied. Grain refinement of ZrCrAIN nanocomposite thin film is occurred by controlling $N_{2}$ partial pressure. Maximum hardness value according to the various $N_{2}$ partial pressures is obtained at 45 GPa. It is also conformed that critical value of the grain size (d) needs to achieve the maximum hardness.

CFUBMS을 이용한 TiZrAlN 나노복합 박막의 미세 구조와 기계적 특성 (Microstructural and Mechanical Characteristics of TiZrAlN Nanocomposite Thin Films by CFUBMS)

  • 김연준;이호영;김용모;김갑석;한전건
    • 한국표면공학회지
    • /
    • 제40권1호
    • /
    • pp.1-5
    • /
    • 2007
  • Quaternary TiZrAlN nanocomposite thin films were synthesized by Closed-Field Unbalanced Magnetron Sputtering (CFUBMS), and their microstructure and mechanical characteristics were examined. The grain refinement of the TiZrAlN nanocomposite thin films was controlled by adjusting the $N_2$ partial pressure. The hardness of the film varied with the $N_2$ partial pressure and the maximum value was obtained approximately 47 GPa. It was also confirmed that there is a critical value of the grain size($d_c$) to need maximum hardness.

TiZrAlN의 500-$700^{\circ}C$ 사이에서 공기 중 산화 (Oxidation of TiZrAlN nanocomposite thin films in air at temperatures between 500 and $700^{\circ}C$)

  • 김민정;봉성준;이동복
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.167-170
    • /
    • 2011
  • Quaternary TiZrAlN nanocomposite thin films with a composition of 20.7Ti-22.2Zr-2.7Al-54.4N (at.%) were deposited by the closed-field unbalanced magnetron sputtering (CFUBMS) method and oxidized in air at temperatures between 500 and $700^{\circ}C$. The oxides formed were $TiO_2$, $ZrO_2$, and $Al_2O_3$. The films had inferior oxidation resistance because the amounts of $ZrO_2$ and $TiO_2$ were large while the amount of $Al_2O_3$ was small. The oxidation progressed primarily by the inward diffusion of oxygen and the outward diffusion of nitrogen.

  • PDF