• Title/Summary/Keyword: CFT구조

Search Result 156, Processing Time 0.027 seconds

Behavior Characteristics of Shear Connector for Composite Behavior of Steel Composite Columns (강합성 부재의 합성거동을 위한 전단 연결재의 거동 특성)

  • Won, Deok Hee;Han, Taek Hee;Kim, Seungjun;Lee, Jung Hwa;Kang, Young Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1993-1999
    • /
    • 2013
  • Steel composite structures have been studied in various areas such as bridges, high rise buildings, and wind towers. They show excellent structural performance through overcoming of the weaknesses of steel and concrete. Although various methods were already developed to achieve full composite behavior between steel and concrete in flexural members, the number of studies regarding composite columns is quite limited. If slip occurs between concrete and steel under external loads, the performance of the composite column would be reduced significantly. Connection methods ensuring full composite action between steel and concrete must be suggested. This paper investigated about structural behavior of shear studs through a series of experimental tests. Extensive parameters were also performed to understand the effects of the diameter of stud, space of stud and height of concrete. The present study provides fundamental bases for further development of design method of shear studs in composite columns.

A Study on the Fire Resistance of yLRC Composite Columns with Steel Sheet Forms and Angles (강재 영구거푸집을 사용한 yLRC 합성기둥의 내화성능 연구)

  • Kim, Bo Ram;Kang, Seong Deok;Kim, Hyung Geun;Kim, Myeong Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.365-375
    • /
    • 2008
  • The main objective of this paper is to study the behaviour of yLRC composite columns at elevated temperatures by experimental test. The effects of load ratios, cross-section size and fire protection for the yLRC columns were investigate d by the test and compared using the heat transfer analysis perfo rmed based on the finite element program ANSYS 10.0 using the ISO834 standard fire curve, following the main guidelines proposed by the EC4 Part 1.2. As heat transfer is the movement of heat by conduction, convection, and radiation, and as temperature inside an object varies by position and time, time. As the steel's thermal conductivity is higher than that of concrete, steel loses its strength rapidly in a high-temperature situation such as a fire. Fire resistance performance of the yLRC composite column under fire conditions was evaluated througheat transfer analysis for parametric study.

Parametric Study on design Variables of Rectangular Concrete Filled Tubular Columns with High-Strength Steel (유한요소해석에 의한 고강도 강재를 사용한 각형 콘크리트 충전 강관 기둥의 설계인자 분석)

  • Choi, Hyun-Ki;Bae, Baek-Il;Choi, Yun-Cheol;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.10-21
    • /
    • 2015
  • For the safe design of steel-concrete composite structure, usable yield strength of steels are limited in most of design standard. However, this limitation sometimes cause the uneconomical design for some kind of members such as slender columns which was affected by elastic buckling load. For the economical design for slender columns, parametric study of RCFT (Rectangular CFT) with high-strength steel is conducted, especially investigating the limitation of yield strength of high-strength steels. Using ABAQUS, finite element analysis program, the finite element model was constructed and calibrated with experimental study for RCFT with high strength steel which have yield strength up to 680MPa. Investigated design parameters are yield strength of steel, compressive strength of concrete, steel thickness and slenderness ratio. The effect of design parameters were compared with design standard, KBC-09. From the parametric study with 54 models and previous test specimens, RCFT can be safely design with higher yield strength of steels than currently limited by KBC for large range of slenderness ratio.

A Study on a Quantified Structure Simulation Technique for Product Design Based on Augmented Reality (제품 디자인을 위한 증강현실 기반 정량구조 시뮬레이션 기법에 대한 연구)

  • Lee, Woo-Hun
    • Archives of design research
    • /
    • v.18 no.3 s.61
    • /
    • pp.85-94
    • /
    • 2005
  • Most of product designers use 3D CAD system as a inevitable design tool nowadays and many new products are developed through a concurrent engineering process. However, it is very difficult for novice designers to get the sense of reality from modeling objects shown in the computer screens. Such a intangibility problem comes from the lack of haptic interactions and contextual information about the real space because designers tend to do 3D modeling works only in a virtual space of 3D CAD system. To address this problem, this research investigate the possibility of a interactive quantified structure simulation for product design using AR(augmented reality) which can register a 3D CAD modeling object on the real space. We built a quantified structure simulation system based on AR and conducted a series of experiments to measure how accurately human perceive and adjust the size of virtual objects under varied experimental conditions in the AR environment. The experiment participants adjusted a virtual cube to a reference real cube within 1.3% relative error(5.3% relative StDev). The results gave the strong evidence that the participants can perceive the size of a virtual object very accurately. Furthermore, we found that it is easier to perceive the size of a virtual object in the condition of presenting plenty of real reference objects than few reference objects, and using LCD panel than HMD. We tried to apply the simulation system to identify preference characteristics for the appearance design of a home-service robot as a case study which explores the potential application of the system. There were significant variances in participants' preferred characteristics about robot appearance and that was supposed to come from the lack of typicality of robot image. Then, several characteristic groups were segmented by duster analysis. On the other hand, it was interesting finding that participants have significantly different preference characteristics between robot with arm and armless robot and there was a very strong correlation between the height of robot and arm length as a human body.

  • PDF

Cyclic Loading Test for Beam-to-Column Connections of Concrete Encased CFT Column (콘크리트피복충전 각형강관 기둥-보 접합부의 주기하중 실험)

  • Park, Hong Gun;Lee, Ho Jun;Park, Sung Soon;Kim, Sung Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.55-68
    • /
    • 2014
  • In this study, the beam-to column connections of concrete-encased-and-filled steel tube columns were tested under cyclic loading. Two specimens using steel beams and two specimens using precast concrete beams were tested. The dimension of the column cross section was $670mm{\pm}670mm$. The beam depths were 488mm and 588mm for the steel beams and 700mm for the precast concrete beams. The longitudinal bar ratios of the precast concrete beams were 1.1% and 1.5%. For the connections to the steel beams, continuity plates were used in the tube columns. For the connections to the PC beams, couplers were used for beam re-bar connections. The test results showed that except for a specimen, deformation capacities of the specimens were greater than 4% rotation angle, which is the requirement for the Special Moment Frame. Particularly, specimens using precast concrete beam showed excellent performances in the strength, deformation, and energy dissipation.

A Study of Design Education for the Public and its Development Direction (대중의 디자인교육문제와 발전방향에 관한 연구)

  • Cho, Kyu-Myung;Kim, Tae-Chul;Kim, Kyung-Sook
    • Archives of design research
    • /
    • v.18 no.1 s.59
    • /
    • pp.91-104
    • /
    • 2005
  • In the past, the design education focused on the technique and skill to satisfy the production and consumption activities of a corporation based on beauty and practicality in the industrial age. Now, it's time to switchover to a life-quality enhancing education by harmonizing and meeting the public's physical and mental needs because design education is a character education which enhances the quality of life by uplifting people's aesthetic sense. This paper has emphasized on the importance of public education of design through the theoretical investigation on social environmental changes caused by the emergence of information society,,education problems, public education, and the necessity of design education. The reason why this study should be done has been suggested by investigating the necessity of this research and bringing up the issue. Furthermore, the current status and problems of public education on design have been analyzed. Then, based on the result, the development direction of design education has been suggested. This study can be concluded as follows: First, the design education should change from its vertical structure to a horizontal one. It should be widely spread to the public, getting off from its privatization for a certain group. Second, designers and the public should correct their way of thinking about design. The ordinary people as well as the designers should cultivate their capability to find and take care of design related issues in their everyday lives. Third, all people should be the subject of design education for the public. As a part of cultural education on the public's aesthetic sense, design education should be reborn as a field of study in which a sound public culture can be developed by the integration of human life and culture, exceeding the limit of school curriculum.

  • PDF