• Title/Summary/Keyword: CFRP Laminates

Search Result 165, Processing Time 0.019 seconds

Fracture Toughness and AE Behavior of Impact-Damaged CFRP (탄소섬유복합재료의 충격 손상에 따른 파괴 인성과 AE 특성)

  • Lee, S.G.;Nam, K.W.;Oh, S.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.2
    • /
    • pp.81-88
    • /
    • 1997
  • Impact behavior of carbon fiber reinforced plastics (CFRP) laminates were evaluated with tension test and compact tension test. A steel ball launched by an air gun collides against CFRP laminates to generate impact damage of relatively low energy. The static tensile and fracture toughness tests were performed to evaluate the residual strength and the AE behavior of impact-damaged laminates. As a results, it was found that the static strength, the fracture toughness and the AE-event count were decreased with increasing of impact velocity and delamination area, and to have a different strength ratio and fracture toughness ratio for each stacking method. And also, it was confirmed that strength and fracture toughness of impact-damaged CFRP laminates could be evaluated and analyzed quantitatively by AE techniques.

  • PDF

Damage Behavior and Residual Bending Fatigue Strength of CFRP Composite Laminates Subjected to Impact Loading (충격하중을 받은 CFRP 적층판의 손상거동과 잔류굽힘피로강도)

  • Im, Kwang-Hee;Yang, In-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1836-1842
    • /
    • 1996
  • In this paper, static and fatigue bending strengths of CFRP(carbon fiber reinforced plastic laminates having impact damage(FOD) are evaluated. Composite laminates used for this experiment are CF/EPOXY and CF/PEEK orthotropy laminated plates, which have two-interfaces[${0^0}_4{90^0}_4}$]$_sym$. A steel ball launched by the air gun colides against CFRP laminates to generate impact damages. The damage growth during bending fatigue test is observed by the scanning acoustic microscope(SAM). When the impacted side is compressed, the residual fatigue bending strength of CF/PEEK specimen P is greater that that of CF/EPOXY SPECIMEN B. On the other hand, when the impacted side is in tension, the residual fatigue bending strength of CF/PEEK speicemen P is smaller than that of CF/EPOXY specimen B. In the case of impacted-side compression, fracture is proposed from the transverse crack generated near impact point. On the other hand, fracture is developed toward the impact point from the edge of interface-b delamination in the case of impacted-side tension.

Fatigue Life Prediction of CFRP using Fatigue Progressive Damage Model (피로누적손상을 이용한 직조 CFRP의 피로수명 예측)

  • Jang, Jae-Wook;Cho, Je-Hyoung;Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.248-254
    • /
    • 2015
  • The strength and fatigue life of Satin and Twill-woven CF/epoxy composite(CFRP) have been investigated. Damage mechanism fatigue method has been used to assess fatigue damage accumulation. It is based on measured residual stiffness and residual strength of carbon-fiber reinforced plastic(CFRP) laminates under cyclic loading. Fatigue damage evolution in composite laminates and predict fatigue life of the laminates were simulated by finite element analysis(FEA) method. The stress analysis was carried out in MSC patran/Nastran. A modified Hashin's failure criterion di rmfjapplied to predict the failure of the experimental data of fatigue life but a Ye-delamination criterion was ignored because of 2D modeling. Almost linear stiffness and strength degradation were observed during most of the fatigue process. These stress distribution data were adopted in the simulation to simulate fatigue behavior and estimate life of the laminates. From the results, the predicted fatigue life is more conservatively estimated than the experimental results.

Investigation of the effects of connectors to enhance bond strength of externally bonded steel plates and CFRP laminates with concrete

  • Jabbar, Ali Sami Abdul;Alam, Md Ashraful;Mustapha, Kamal Nasharuddin
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1275-1303
    • /
    • 2016
  • Steel plates and carbon-fiber-reinforced polymer (CFRP) laminates or plates bonded to concrete substrates have been widely used for concrete strengthening. However, this technique cause plate debonding, which makes the strengthening system inefficient. The main objective of this study is to enhance the bond strength of externally bonded steel plates and CFRP laminates to the concrete surface by proposing new embedded adhesive and steel connectors. The effects of these new embedded connectors were investigated through the tests on 36 prism specimens. Parameters such as interfacial shear stress, fracture energy and the maximum strains in plates were also determined in this study and compared with the maximum value of debonding stresses using a relevant failure criterion by means of pullout test. The study indicates that the interfacial bond strength between the externally bonded plates and concrete can be increased remarkably by using these connectors. The investigation verifies that steel connectors increase the shear bond strength by 48% compared to 38% for the adhesive connectors. Thus, steel connectors are more effective than adhesive connectors in increasing shear bond strength. Results also show that the use of double connectors significantly increases interfacial shear stress and decrease debonding failure. Finally, a new proposed formula is modified to predict the maximum bond strength of steel plates and CFRP laminates adhesively glued to concrete in the presence of the embedded connectors.

Experimental study on long-term behaviour of CFRP strengthened RC beams under sustained load

  • Ahmed, Ehsan;Sobuz, Habibur Rahman
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.105-120
    • /
    • 2011
  • The strengthening and rehabilitation of reinforced concrete structures with externally bonded carbon fibre reinforced polymer (FRP) laminates has shown excellent performance and, as a result, this technology is rapidly replacing steel plate bonding techniques. This paper addresses this issue, and presents results deals with the influence of external bonded CFRP-reinforcement on the time-dependent behavior of reinforced concrete beams. A total of eight reinforced concrete beams with cracked and un-cracked section, with and without externally bonded CFRP laminates, were investigated for their creep and shrinkage behavior. All the beams considered in this paper were simply supported and subjected to a uniform sustained loading for the period of six months. The main parameters of this study are two types of sustained load and different degrees of strengthening scheme for both cracked and un-cracked sections of beams. Both analytical and experimental work has been carried out on strengthened beams to investigate the cracking and deflection performance. The applied sustained load was 56% and 38% of the ultimate static capacities of the un-strengthened beams for cracked and un-cracked section respectively. The analytical values based on effective modulus method (EMM) are compared to the experimental results and it is found that the analytical values are in general give conservative estimates of the experimental results. It was concluded that the attachment of CFRP composite laminates has a positive influence on the long term performance of strengthened beams.

A Study on the Influence of Stacking Sequences using CFRP Laminate Plates by Falling Weight Impact (탄소섬유복합평판에 낙추충격을 가할 때 적층구성에 미치는 영향에 관한 연구)

  • 임광희;박노식;양인영
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.106-109
    • /
    • 2000
  • Impact tester was build up to evaluate the characterization of CFRP laminate plates under the low velocity impact. The tests were conducted on several laminates of different ply orientation A system was budded for the impact strength of CFRP laminates in consideration of stress wave propagation theory using drop-weight impact tester as one of impact test. Results indicate that absorbed energy of quasi-isotropic specimen having four interfaces is higher than that of orthotropic laminates with two interfaces. Also the damage area was measured with ultrasonic C-scanner on some samples. In the specimens the relationship was linear between damaged area and absorbed energy to some degree. Absorbed energy in the specimen that ply number, interface number and fiber stacking sequences is same but having hybrid is higher than that of orthotropic laminates without hybrid.

  • PDF

Analytical Investigation on Strengthening Details of RC Beams Strengthened with NSMR (NSM보강 RC보의 보강 상세에 대한 해석)

  • Kang, Jae-Yoon;Park, Young-Hwan;Park, Jong-Sup;You, Young-Jun;Jung, Woo-Tai
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.195-198
    • /
    • 2005
  • To investigate the strengthening efficiency of the Near Surface Mounted Reinforcement (NSMR) technique analytically, a structural model for the finite element method (FEM) able to simulate accurately the experimental results was determined. Applying the finite element model, parametric analysis was performed considering the groove depth and spacing of CFRP laminates. Analytical study on the groove depth revealed the existence of a critical depth beyond which the increase of the ultimate load becomes imperceptible. Analytical results regard to the spacing of the CFRP laminates showed that comparatively smooth fluctuations of the ultimate load were produced by the variation of the spacing and the presence of an optimal spacing range for which relatively better strengthening efficiency can be obtained. Particularly, a spacing preventing the interference between adjacent CFRP laminates and the influence of the concrete cover at the edges as well as allowing the CFRP laminatesto behave independently was derived.

  • PDF

AE Signals Characteristics from Fracture by Type of CFRP Stacking Structure (CFRP 적층 형태에 따른 파괴시 음향방출 신호특성)

  • 남기우;문창권
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.67-71
    • /
    • 2002
  • Damage process of CFRP laminates was characterized by Acoustic Emission (AE). The main objective of this study is to determine if the sources of AE in CERP laminates could be identified from the characteristics of the waveform signals recorded during monotonic tensile test. The time history and power spectrum of each individual wave signal recorded during test were examined and classified according to their special characteristics. The wave from and frequency of AE signal from a specimens is an aid to the determination of the extent of the different fracture mechanism such as matrix crack, debonding, fiber pull-out and fiber fracture as load is increased. Four distinct types of signals were observed regardless of specimen condition. The result showed that the AE method could be effectively used for analysis of fracture mechanism in CFRP laminates.

Impact Damages and Residual Strength of CFRP Laminates under the Hygrothermal Environment (고온.고습 환경에서 CFRP 적층재의 충격손상와 잔류강도)

  • Jeong, Jong-An;Yang, In-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3748-3758
    • /
    • 1996
  • This study is to investigate experimentally relationships between the impact energy and moisture absorption characteristies vs.the residual bending strength with the variation of stacking seqences. When Carbon-fiber reinforced plastics(CFRP) impact-induced laminates are subjected to the high temperatures and hygrothermal effects, it is found that what CFRP laminates are impacted by a steel ball (5 mm in diametar) ; thus, the generated delamination is observed by the ultrasonic microscope. And the residual bending strength is evaluated by a three-point bending test. Also, a thermostat is used in test with the unimpacted and impacted specimens for the moisture experimentaiton. The percision electro lever scles is used to measure the moisture content(1/10, 000g).

Impact damage and residual bending strength of CFRP composite laminates involved difference of fiber stacking orientation and matrics

  • Sim, Jae-Ki;Yang, In-Young;Oh, Taek-Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.152-162
    • /
    • 1993
  • The purpose of this study is to investigate problems of residual bending strength and the impact damage experimentally when CFRP composite laminates are subjected to Foreign object damage. The specimens composed of four types of CR/EPOXY and a CF/PEEK composite laminates which involved difference of fiber stracking orientation and matrics. The result were summariged as follows : 1) It is found that both orthotropic and guasi-isotropic composite laminates are increasimg lineally between impact energy and damage delamination area. 2) Delamination devel- opment energy(mm$^{2}$J) OF cf/epoxy composite aminates is less than that of CF/PEEK. 3) When impact energy is applied to specimens within 3J, the residual strength of orthotropic is greater than guasi-isotropic composite laminates. On the other hand, it is predicted that residual bending strength of orthotropic composite laminates is less than that of quasi-isotropic when impact energy is more thaen 3J. 4) It is found in CF/PEEK that for the impact side compression, residual of bending strength versus impact energy is almost constant, while in case of impact side tension, residual bending strength is decreased rapidly near 1.2J. of impact energy due to the effect of delamination buckling.

  • PDF