• Title/Summary/Keyword: CFD-ACE

Search Result 114, Processing Time 0.025 seconds

Analysis on the Heat Exchange Efficiency of Kraft Recovery Boiler by Nose Arch Structure Using CFD (CFD를 활용한 크래프트 회수보일러 내부 노즈 아치 구조에 따른 열교환 효율 분석)

  • Jang, Yongho;Park, Hyundo;Lim, Kyung pil;Park, Hansin;Kim, Junghwan;Cho, Hyungtae
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.149-156
    • /
    • 2021
  • A kraft recovery boiler produces steam for power generation by the combustion of black liquor from the kraft pulping process. Since saturated steam became superheated in a superheater above the furnace, it is important to increase the heat exchange efficiency for the superheated steam production and power generation. A nose arch at the bottom of the superheater is important for blocking radiation from the furnace which causes corrosion of the superheater. But the nose arch is the main reason for creating a recirculation region and then decreasing the heat exchange efficiency by holding cold flue gas after the heat transfer to saturated steam. In this study, the size of recirculation region and the temperature of flue gas at the outlet were analyzed by the nose arch structure using computational fluid dynamics (CFD). As a result, when the nose arch angle changed from 106.5° (case 1) to 150° (case4), the recirculation region of flue gas decreased and the heat exchange efficiency between the flue gas and the steam increased by 10.3%.

Numerical Analysis about the Flow Characteristics for Different Figures of Inlet and Outlet in Diffuser/Nozzle based on Piezoelectric Micropump (디퓨져/노즐을 이용한 압전형 마이크로 펌프의 입 . 출구 형상 차이에 따른 유동특성에 관한 수치해석적 연구)

  • Kim, Chang-Nyung;Kim, Chin-Uck
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3104-3109
    • /
    • 2007
  • The present study has been carried out to investigate the pumping characteristics for different figures of inlet and outlet in diffuser/nozzle based on piezoelectric micropump. Piezoelectric micropump system consists of several parts like a pumping chamber, diffuser/nozzle, piezoelectric element and tubes. Parts of the micropump connected with diffuser/nozzle and tubes have been analyzed.. The magnified parts have been classified into two different models based on their resistance. These models have been further classified into six models with each one having three different angles at the magnified parts. Each model has been compared and analyzed using the simulation tool, namely, CFD-ACE depending on their flow rates and characteristics.

  • PDF

Characterization of Gas Distribution Effect in Inductively Coupled Plasma System (유도결합 플라즈마 시스템의 수치 모델링에서 가스 분배 특성 해석)

  • Joo, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.3
    • /
    • pp.133-138
    • /
    • 2013
  • We have developed a 2D axi-symmetric numerical model for an inductively coupled plasma system in order to analyze gas mixing effect through a narrow gap shower head. For frictional flow, holes of 0.5 mm diameter and 2 mm length are approximately modeled in 2D. Gas velocity distribution 10 mm below the shower head showed 2 times difference between the center and the edge at 10 mTorr. At 10 mm above the wafer, it was increased to 6 times difference due to the pumping duct effect. The model with a 5 mm height buffer region of a shower head showed reasonable behavior of Ar discharge. The density of Ar metastable showed additional peak inside the buffer region around the edge holes.

Numerical study on the reactive flow in Gas Generator (가스발생기 내부 유동 특성에 관한 수치 연구)

  • Yu Jungmin;Lee Changjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.198-202
    • /
    • 2005
  • Gas generator is the equipment to produce high enthalpy gas used to generate sufficient power to operate turbine and pump system for propellant feeding in liquid rocket engine. Since the limit in operating temperature is imposed due to turbine blade, the gas generator has to be operated at the temperature far below stoichiometric maintaining fuel rich combustion. In this research, fundamental study was performed to understand the non-equilibrium combustion process with in-house code and CFD-ACE as well.

  • PDF

Flow Characteristics in the Converging Mini-Channels (좁아지는 유로에서의 유동 특성)

  • Karng, Sarng-Woo;Kim, Jin-Ho;Lee, Yoon-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1623-1628
    • /
    • 2004
  • Recently mini-channels or micro-channels are widely used for cooling the high density power electronic devices. Especially, the channels are used in small and high efficient equipments such as heat pipes and heat exchangers. Interfacial velocities between liquid and gas phases are very important in mini or micro-channels. In this paper, an experiment and a numerical analysis on the interfacial velocities were performed. In the experiment, the interfacial velocities which were measured by the high-speed CCD camera were about $26{\sim}33$ cm/s and the velocities increased as the inclination angle did. In the numerical experiment, CFD-ACE+, a commercial program, was used, the velocities had similar values with experimental results. As the inclination angle and the contact angle increased, the interfacial velocities did because of the surface tension which causes to move the interface. The effect of inclination angle was larger in the converging channels than in straight channels.

  • PDF

A Numerical Study on Electro-osmotic Flow and Stirring Characteristics in a Microchannel with Local Adjustment of Electric Potential (마이크로 채널 내 국소적 전위 인가에 따른 전기삼투 유동 및 혼합 특성에 대한 수치해석적 연구)

  • Suh Yong-Kweon;Heo Hyeng-Seok
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.1
    • /
    • pp.31-40
    • /
    • 2006
  • In this study a newly designed electro-osmotic micro-mixer is proposed. This study is composed of a channel and metal electrodes attached locally on the side wall surface ultimately to control the mixing effect. To obtain the flow patterns, numerical computation was performed by using a commercial code, CFD-ACE. The fluid-flow solutions are the cast into studying the characteristics of stirring in terms of the mixing index. It was shown that the local control of the electric potential can indeed contribute to the enhancement of mixing effect.

  • PDF

A Study on the curvature Effect of microchannel within Electroosmotic Flow (전기삼투 유동 중 마이크로 채널 내 곡률 변화에 따른 혼합특성에 대한 연구)

  • Heo, Hyeung-Seok;Suh, Yong-Kweon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.107-110
    • /
    • 2005
  • In this study a newly designed and electro-osmotic micro-mixer is proposed. This design is comprised of a channel and metal electrodes attached in the local side wall surface, To investigate the flow patterns a numerical method is employed. To obtain the flow patterns numerical computation are performed by using a commercial code, CFD-ACE. The fluid-flow solutions are then cast into studying the characteristics of stirring with aid the Mixing index. Focus is given the effect on the electro osmotic flow characteristics under the curvature variation in the microchannel with the local of the electric field

  • PDF

The study of three dimentional flow field using defocusing method in micromixer (Defocusing 기법을 이용한 마이크로 믹서내의 3 차원 유동장 측정연구)

  • Kim, Su-Heon;Yoon, Sang-Youl;Kim, Kyung-Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.99-102
    • /
    • 2005
  • This study was conducted for obtaining the optimized data to build the mixer or micro fluid device as measuring the three dimensions flow field in micro mixer. To acquire the rapid diffusion on the region of low Reynolds (Re < 100), the staggered herringbone mixer using chaotic advection was selected in this case. At first, by conducting the numerical analytical virtual experiment using CFD-ACE+, three dimensions flow field in the micro mixer was estimated As this flow field was proven using defocusing particle tracing method, the behavior of micro flow with three dimensional aspects could be analyzed. Numerical analysis and flow pattern in the micro mixer by experimental verification made to be able to analyze the chaotic advection. These can be important sources for building more optimized form. Verifying the information of three dimensional flow structure, these information can be used as the data for developing and improving the $\mu$ -TAS.

  • PDF

Study on the Flow Characteristics Inside a Metal DPF System (메탈 DPF 시스템 유동특성 연구)

  • Han, Cheolheui;Chon, Munsoo
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.31-35
    • /
    • 2013
  • Unsteady fluid dynamics analysis of flow characteristics inside a Metal DPF system is done using a commercial CAE software, CFD-ACE+. The time profiles of both temperature and pressure of exhaust gas are given as initial conditions. It was found that the position of connecting pipes and the numbering of exhaust gases did not affect the flow uniformity. The presence of a DPF resulted in the significant flow nonuniformity effect on the flow characteristics at the inlet of the DPF. Present results can be applied to the selection of optimal geometry that produces uniform flow characteristics inside a DPF system.

  • PDF

A STUDY ON CHARACTERISTICS OF EECTRO-OSMOTIC FLOWS UNDER THE LOCAL VARIATION OF THE ELECTRIC FIELD (전기장의 국소변화에 따른 전기삼투 유동 및 혼합 특성해석)

  • Heo H. S.;Jeong J. H.;Sub Y. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.27-30
    • /
    • 2005
  • In a microfluidic chips pressure driven flow or electro-osmotic flow has been usually employed to deliver bio-samples. Flow in the chips is usually slow and the mixing performance is poor. A micro-mixer with a rapid mixing is important for practical applications. In this study a newly designed and electro-osmotic driven micro-mixer is proposed. This design is comprised of a channel and a series of metal electrodes periodically attached on the side surface. In this configuration electro-osmotic flows and the stirring effects are simulated three-dimensionally using a commercial code, CFD-ACE. Focus is given the effect on the electro-osmotic flow characteristics under the local variation of the electric field.

  • PDF