• Title/Summary/Keyword: CFD system

Search Result 1,608, Processing Time 0.031 seconds

A Study on Real-Time Monitoring for Moisture Measurement of Organic Samples inside a Drying Oven using Arduino Based on Open-Source (오픈 소스 기반의 아두이노를 이용한 건조기 내 유기 시료의 실시간 수분측정 모니터링에 관한 연구)

  • Kim, Jeong-hun
    • Journal of Venture Innovation
    • /
    • v.5 no.2
    • /
    • pp.85-99
    • /
    • 2022
  • Dryers becoming commercially available for experimental and industrial use are classified to general drying oven, hot-air dryer, vacuum dryer, freezing dryer, etc. and kinds of them are various from the function, size and volume, etc. But the moisture measurement is not applied although it is important factor for the quality control and the performance improvement of products, and then now is very passive because the weight is weighed arbitrarily after dry-end. Generally the method for measuring moisture is divided by a direct measurement method and a indirect measurement method, and the former such as the change of weight or volume on the front and rear of separation of moisture, etc. is mainly used. Relatively a indirect measurement is very limited to apply due to utilize measurement apparatuses using temperature conductivity and micro-wave etc. In this research, we easily designed the moisture measurement system using the open-source based Arduino, and monitored moisture fluctuations and weight profiles in the real-time without the effect of external environment. Concretely the temperature-humidity and load cell sensors were packaged into a drying oven and the various change values were measured, and their sensors capable to operate 60℃ and 80℃ were selected to suitable for the moisture sensitive materials and the food dry. And also the performance safety using the organic samples of banana, pear, sawdust could be secured because the changes of evaporation rate as the dry time and temperature, and the measurement values of load cell appeared stable response characteristics through repeated experiments. Hereafter we judge that the reliability can be improved increasingly through the expansion of temperature-humidity range and the comparative analysis with CFD(Computational Fluid Dynamics) program.

A Study on the Flow Uniformity and Characteristics of Exhaust gas in Diesel Particulate Filter/Diesel Oxidation Catalyst of Ship Diesel Reduction System by Computational Fluid Dynamics (CFD에 의한 선박용 DPF/DOC내 배기가스의 유동 균일도 및 특성 연구)

  • Kim, YunJi;Han, Danbee;Baek, Youngsoon
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.153-160
    • /
    • 2019
  • As air pollution becomes more serious due to the increased number of diesel vessel operations, ship regulations on harmful emissions strengthen. Therefore, the development of a diesel exhaust after-treatment system for ships is required, and the higher the flow uniformity of the exhaust treatment system, the higher the treatment efficiency. With the computer software ANSYS Fluent, pressure drop and flow uniformity were used in this study to simulate flow rate with and without a baffle in both a Diesel Oxidation Catalyst (DOC) and Diesel Particulate Filter (DPF) system. The system pressure drop was found to be 38 to 40 mbar in the existing system condition, and the flow uniformity was approximately 84 to 92% at the inlet and outlet of the DOC. When the baffle was installed inside the system, the pressure increased and the flow uniformity was lowered due to an increase in flow rate. When the exhaust gas flow was reduced by 50% from $7,548kg\;h^{-1}$ to $3,772kg\;h^{-1}$, the flow uniformity at the inlet and outlet of the DOC increased by approximately 1 to 3% due to the low flow rate. In the case of DPF, the flow uniformity of exhaust gas was 98 to 99% because the uneven flow proceeded after uniformly flowing from the DOC.

The Study on the Bi-directional Ejection Air Curtain System for Blocking Smoke Diffusion in case of Tunnel Fire (터널 화재시 연기확산 차단을 위한 양방향 토출 에어커튼 시스템에 대한 연구)

  • Yang, Sang-Ho;Choi, Young-Seok;Kim, Jung-Yup;Kim, Nam-Goo;Kim, Kyung-Yup
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.43-53
    • /
    • 2014
  • This paper presents a the study on air curtain system of top and bottom bi-directional jet air discharge for blocking the spread of smoke in case of tunnel fire. The five kinds different air curtains of A, B, C, D, and E of models for various performance tested after manufactured. A results of the various performance test obtained the best efficiency from E model air curtain. And optimize the injection angle of the air curtain nozzle through the three-dimensional computational fluid dynamics (CFD) analysis and analyzed the effects of external pressure of tunnel. and also single factor design have been applied. At present, our attention is focused on the velocity distribution(flow width and flow position) of 1.5m on the ground in tunnel. Also, analyzed the influence of draft in the tunnel. Detailed effects of discharge angle of air curtain and velocity at nozzle exit are discussed.

Nano-Powder 제조를 위한 RF Thermal Plasma Torch System 개발 및 Nano-Si 특성 연구

  • Song, Seok-Gyun;Son, Byeong-Gu;Kim, Byeong-Hun;Lee, Mun-Won;Sin, Myeong-Seon;Choe, Seon-Yong;Kim, Seong-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.179-179
    • /
    • 2012
  • 국내에는 나노 분말 제조를 위한 RF 열플라즈마 시스템 제조 기술이 확보되어 있지 않고, 또한 나노 파우더 제조를 위한 공정 기술 역시 외국 업체에 전적으로 의존하고 있다. 본 연구에서는 나노 분말 제조를 위한 RF 열 플라즈마 토치 시스템 개발과 고품질의 나노 파우더 합성 공정 기술을 확립하여 필요 기관에 제공하는데 있다. 80 kW RF Plasma torch system의 설계 및 제작을 위해 플라즈마 Simulator인 CFD-ACE+를 이용하여 플라즈마 토치 및 반응로 내의 온도 분포, 유체 유동, 열전달 등의 해석을 통해 플라즈마 토치 및 반응로의 반경 및 길이, 구조의 설계 값을 도출하여 반응로를 설계하여 RF 파워, RF 플라즈마 토치(Torch), 반응기(Reactor), 사이클론(Cyclone), 포집부(Collector), 열교환기 및 진공배기 시스템으로 구성하였다. Si 나노 소재의 경우, 이차전지 음극재에 적용이 가능한 대표적인 소재로서 높음 비용량과 충/방전시 부피팽창을 감소시킬 수 있어 이차전지의 고용량 구현을 위해서는 가장 중요한 소재중 하나로 많은 관심 재료로 평가 받고 있다. 따라서 본 연구에서는 상용화된 Si 원료 powder를 사용하여 고상 분체 공급 장치를 통하여 고온의 플라즈마를 통과시켜 기상화 및 결정화과정을 통해 Si 나노분말을 제조하였다. 공정 변수로서 공정압력 및 플라즈마 power, Gas의 변화량에 따른 나노 분말의 제조 특성에 대한 실험을 진행한 후 제조된 나노 분말을 비표면적측정(BET) 및 SEM 측정 결과 분석을 통하여 시스템 특성을 파악하였으며 제조된 Si 나노 파우더는 이차전지 음극재로서 770 mAh/g의 용량과 93%@50 cycle 수준의 유지율을 나타내었다.

  • PDF

Analysis Of Dielectric Recovery Characteristics for $SF_6$ Gas-Blast AFC ($SF_6$아크의 절연회복특성 해석)

  • Song, Gi-Dong;Lee, Byeong-Yun;Park, Gyeong-Yeop;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.6
    • /
    • pp.273-284
    • /
    • 2002
  • In this paper, computer simulations of the physical Phenomena occurring in the arc region before and after current zero were carried out to evaluate the dielectric recovery characteristics of two types of double-flow nozzles. A commercial CFD Program "PHOENICS" is used for the simulation and the user-coded subroutines to consider the arcing phenomena were added to this program by the authors. The computed results were verified by the comparison with the test results presented by the research group of BBC. In order to investigate the state of the arc region after current zero, the simulation was carried out with four steps. They are cold gas flow analysis, steady state arc simulation, transient arc simulation before current zero, transient hot gas flow simulation after current zero. The semi-experimental arc radiation model is adapted to consider the radiation energy transport and Prandtl′s mixing length model is employed as the turbulence model. The electric field and the magnetic field were calculated with the same grid structure used for the simulation of the flow field. The streamer criterion was introduced to evaluate the dielectric recovery characteristics after current zero. Compared with the results obtained by assuming the current zero state in the former studies, it has been found that the results obtained by considering the state before current zerowere more accurate.

Numerical Analysis on the Initial Cool-down Performance Inside an Automobile for the Evaluation of Passenger's Thermal Comfort (차량 내부 탑승자의 쾌적성 평가를 위한 초기 냉방운전 성능에 대한 수치해석적 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Baek, Je-Hyun;Kim, Kyung-Chun;Ji, Ho-Seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.115-123
    • /
    • 2010
  • Cool-down performance after soaking is important because it affects passenger's thermal comfort. The cooling capacity of HVAC system determines initial cool down performance in most cases, the performance is also affected by location, and shape of panel vent, indoor seat arrangement. Therefore, optimal indoor designs are required in developing a new car. In this paper, initial cool down performance is predicted by CFD(computational fluid dynamics) analysis. Experimental time-averaging temperature data are used as inlet boundary condition. For more reliable analysis, real vehicle model and human FE model are used in grid generation procedure. Thermal and aerodynamic characteristics on re-circulation cool vent mode are investigated using CFX 12.0. Thermal comfort represented by PMV(predicted mean vote) is evaluated using acquired numerical data. Temperature and velocity fields show that flow in passenger's compartment after soaking is considerably unstable at the view point of thermodynamics. Volume-averaged temperature is decreased exponentially during overall cool down process. However, temperature monitored at different 16 spots in CFX-Solver shows local variation in head, chest, knee, foot. The cooling speed at the head and chest nearby panel vent are relatively faster than at the knee and foot. Horizontal temperature contour shows asymmetric distribution because of the location of exhaust vent. By evaluating the passenger's thermal comfort, slowest cooling region is found at the driver's seat.

Upgrade Development of a Centrifugal Compressor for Marine Engine Turbochargers (선박용 터보차져 원심압축기의 성능향상 개발)

  • Oh, Jong Sik;Oh, Koon Sup;Yoo, Kwang Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.1 s.6
    • /
    • pp.43-50
    • /
    • 2000
  • Upgrade development of a high pressure ratio centrifugal compressor in marine engine turbochargers is presented. A new matched operating point at increased speed of rotation was determined through system cycle analysis using the exisitng test data of turbine performance. Under some severe restrictions for geometric parameters, the state-of-the-art methods of both aerodynamic design and CFD analysis were applied, in which only an impeller, a vaned diffusor and some part of casing wall were modified. Prototype hardware was fabricated and assembled for system performance tests. Excellent performance in pressure ratio and efficiency was obtained over whole speed region. Reduced surge and choke margin was, however, observed at design speed of rotation.

  • PDF

High-Altitude Environment Simulation of Space Launch Vehicle Including a Thruster Module (추력기 모듈을 포함한 우주발사체 고공환경모사)

  • Lee, Sungmin;Oh, Bum-Seok;Kim, YoungJun;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.791-797
    • /
    • 2018
  • In this work, the high-altitude environment simulation study was carried out at an altitude of 65 km exceeding Mach number of 6 after the launch of Korean Space Launch Vehicle using a shock tunnel. To minimize the flow disturbance due to the strut support of test model as much as possible, a few different types of strut configurations were considered. Using the configuration with minimum disturbance, the high-altitude environment simulation experiment including a propulsion system with a single-plume, was conducted. From the thruster test through flow visualization, not only a shockwave pattern, but a general flow-field pattern from the mutual interaction between the exhaust plume and the free-stream undisturbed flow, was experimentally observed. The comparison with the computation fluid dynamic(CFD) results, showed a good agreement in the forebody whereas in the afterbody and the nozzle the disagreement was about ${\pm}7%$ due to unwanted shockwave formation emanated from the nozzle-exit.

COMPUTATIONAL SIMULATION OF FIRE SUPPRESSION SYSTEM FOR CABINS OF SHIPBOARD ENCLOSURE (선박 거주구역용 소화시스템의 전산 시뮬레이션)

  • Jung, I.S.;Chung, H.T.;Han, Y.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.40-45
    • /
    • 2016
  • The numerical simulation has been performed to predict the performance of the fire suppression system for cabin of shipboard enclosure. The present study aims ultimately at finding the optimal parametric conditions of the mist-injecting nozzles using the CFD methods. The open numerical code was used for the present simulation named as FDS (Fire Dynamics Simulator). Application has been done to predict the interaction between water mist and fire plume. In this study, the passenger cabin was chosen as simulation space. The computational domains for simulation in the passenger cabin were determined following the fire scenario of IMO rules. The full scale of the flow field is $W{\times}L{\times}H=4{\times}3{\times}2.4m^3$ with a dead zone of $W{\times}L{\times}H=1.22{\times}1.1{\times}2.4m^3$. The water mist nozzle is installed in ceiling center of 2.3 m height from the floor, and there are six mattresses and four cushions in the simulation space. The combination patterns of orifices to the main nozzle and the position to install nozzles were chosen as the simulation parameters for design applications. From the present numerical results, the centered-located nozzles having evenly combined orifices were shown as the best performance of fire suppression.

Numerical Simulation of Surface Tension-Dominant Multiphase Flows by Using Volume-Capturing Method and Unstructured Grid System (비정렬격자계와 체적포착법을 사용한 표면장력이 지배적인 다상유동 수치해석)

  • Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.723-733
    • /
    • 2011
  • A numerical method of the CSF(Continuum Surface Force) model is presented for the calculation of the surface tension force and implemented in an in-house solution code(PowerCFD). The present method(code) employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with volume capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The application of the present method to a 2-D liquid drop problem is illustrated by an equilibrium and nonequilibrium oscillating drop calculation. It is found that the present method simulates efficiently and accurately surface tension-dominant multiphase flows.